摘要:
Provided herein, is a nucleic acid sequencing method based on detection of Raman signatures of oligonucleotide probes. Raman signatures of individually captured nucleic acid probes, optionally labeled by a Raman label or a positively charged enhancer, are detected. The sequences of captured probes are used to identify the nucleotide sequences of captured probes and complementary target nucleic acids, which are then aligned and used to obtain nucleic acid sequence information. In another embodiment, a method is provided for determining a nucleotide occurrence at a target nucleotide position of a target nucleic acid, that utilizes binding of the target nucleic acid to a labeled oligonucleotide probe that binds to the target nucleic acid, wherein the labeled oligonucleotide probe includes a first label and a second label, the first label being capable of affecting an optical property of the second label.
摘要:
The present disclosure concerns methods for producing and/or using molecular barcodes. In certain embodiments of the invention, the barcodes comprise polymer backbones that may contain one or more branch structures. Tags may be attached to the backbone and/or branch structures. The barcode may also comprise a probe that can bind to a target, such as proteins, nucleic acids and other biomolecules or aggregates. Different barcodes may be distinguished by the type and location of the tags. In other embodiments, barcodes may be produced by hybridization of one or more tagged oligonucleotides to a template, comprising a container section and a probe section. The tagged oligonucleotides may be designed as modular code sections, to form different barcodes specific for different targets. In alternative embodiments, barcodes may be prepared by polymerization of monomeric units. Bound barcodes may be detected by various imaging modalities, such as, surface plasmon resonance, fluorescent or Raman spectroscopy.
摘要:
Method and device to collect multiplex data simultaneously in analyte detection and analyze the data by experimentally trained software (machine-learning) is disclosed. Various ways (magnetic particles and microcoils) are disclosed to collect multiple reporter (tag) signals. Multiplex detection can increase the biomolecule analysis efficiency by using small sample size and saving assay reagents and time. Machine learning and data analysis schemes are also disclosed. Multiple affinity binding partners, each labeled by a unique reporter, are contacted with a sample and a green spectrum is taken to detect multiple reporter signals. The spectrum is deconvoluted by experimentally trained software to identify multiple analytes.
摘要:
SERS technology is used for high throughput screening of biological analytes and samples. For polynucleotide sequencing, sets of oligonucleotide probes are labeled with composite organic-inorganic nanoparticles (COIN) that produce distinguishable SERS signals when excited by a laser. Detection of a hybridization complex containing members of two such COIN-labeled probe sets will reveal a 12 nucleotide sequence segment of the target polynucleotide. Also provided are surface-modified arrays and chips with multiple arrays to which sets of probe-conjugated COIN or other reporter substrates are immobilized. Analytes are detected by contacting a sample, such as a bodily fluid, with the array-anchored probes. Captured analytes are tagged with an additional target-specific Raman-active tag. Two or more Raman signatures emanating from the detection complexes reveal the identity of the captured analytes.
摘要:
Embodiments of the present invention provide devices and methods for detecting, identifying, distinguishing, and quantifying modifications to nucleic acids, proteins, and peptides using SERS and Raman spectroscopy. Applications of embodiments of the present invention include proteome wide modification profiling and analyses with applications in disease diagnosis, prognosis and drug efficacy studies, enzymatic activity profiling and assays.
摘要:
The presently claimed invention provides for novel methods and kits for reducing the complexity of a nucleic acid sample by providing non-gel based methods for size fractionation. In a preferred embodiment, size fractionation can be accomplished by varying conditions or reagents of a PCR reaction to amplify fragments of specific size ranges. The invention further provides for analysis of the above sample by hybridization to an array, which may be specifically designed to interrogate the desired fragments for particular characteristics, such as, for example, the presence or absence of a polymorphism.
摘要:
The present methods and apparatus concern the detection and/or identification of target analytes using probe molecules. In various embodiments of the invention, the probes or analytes are attached to one or more cantilevers. Binding of a probe to an analyte results in deflection of the cantilever, detected by a detection unit. A counterbalancing force may be applied to restore the cantilever to its original position. The counterbalancing force may be magnetic, electrical or radiative. The detection unit and the mechanism generating the counterbalancing force may be operably coupled to an information processing and control unit, such as a computer. The computer may regulate a feedback loop that maintains the cantilever in a fixed position by balancing the deflecting force and the counterbalancing force. The concentration of analytes in a sample may be determined from the magnitude of the counterbalancing force required to maintain the cantilever in a fixed position.
摘要:
The present invention is based on the discovery that the methods described herein for the production of metallic colloids result in colloids exhibiting increased signal enhancement and reproducibility for the SERS detection of biomolecules. Thus, using the methods of the invention, a wide variety of biomolecules can be detected with a greater sensitivity and reliability.
摘要:
The methods, apparatus and compositions disclosed herein concern the detection, identification and/or sequencing of biomolecules, such as nucleic acids or proteins. In certain embodiments of the invention, coded probes comprising a probe molecule attached to one or more nanobarcodes may be allowed to bind to one or more target molecules. After binding and separation from unbound coded probes, the bound coded probes may be aligned on a surface and analyzed by scanning probe microscopy. The nanobarcodes may be any molecule or complex that is distinguishable by SPM, such as carbon nanotubes, fullerenes, submicrometer metallic barcodes, nanoparticles or quantum dots. Where the probes are oligonucleotides, adjacent coded probes hybridized to a target nucleic acid may be ligated together before alignment and SPM analysis. Compositions comprising coded probes are also disclosed herein. Systems for biomolecule analysis may comprise an SPM instrument and at least one coded probe attached to a surface.
摘要:
The methods, apparatus and systems disclosed herein concern ordered arrays of carbon nanotubes. In particular embodiments of the invention, the nanotube arrays are formed by a method comprising attaching catalyst nanoparticles 140, 230 to polymer 120, 210 molecules, attaching the polymer 120, 210 molecules to a substrate, removing the polymer 120, 210 molecules and producing carbon nanotubes on the catalyst nanoparticles 140, 230. The polymer 120, 210 molecules can be attached to the substrate in ordered patterns, using self-assembly or molecular alignment techniques. The nanotube arrays can be attached to selected areas 110, 310 of the substrate. Within the selected areas 110, 310, the nanotubes are distributed non-randomly. Other embodiments disclosed herein concern apparatus that include ordered arrays of nanotubes attached to a substrate and systems that include ordered arrays of carbon nanotubes attached to a substrate, produced by the claimed methods. In certain embodiments, provided herein are methods for aligning a molecular wire, by ligating the molecular wire to a double stranded DNA molecule.