Abstract:
The invention includes RNA complexes comprising at least three monomeric units of an RNA molecule, each monomeric unit comprising an RNA polymer having first and second helical domains that have respective first and second binding sites, wherein the first binding sites are adapted to binding to one another and are not adapted to bind to the second binding sites, and the second binding sites are adapted to binding to one another and are not adapted to bind to the first binding sites; such that the at least three monomeric units are adapted to self-assemble by forming pairs of cognate interactions and so as to form the RNA complex in a circular closed complex. The invention also includes derivatives of these complexes including aptamers, and analytical methods and devices using same.
Abstract:
The disclosure relates to methods and composition for generating nanoscale devices, systems, and enzyme factories based upon a nucleic acid nanostructure the can be designed to have a predetermined structure.
Abstract:
The present invention provides methods of using metal nanoparticles 0.5 to 400 nm in diameter to enhance the dose and effectiveness of x-rays or of other kinds of radiation in therapeutic regimes of ablating a target tissue, such as tumor. The metal nanoparticles can be administered intravenously, intra-arterially, or locally to achieve specific loading in and around the target tissue. The metal nanoparticles can also be linked to chemical and/or biochemical moieties which bind specifically to the target tissue. The enhanced radiation methods can also be applied to ablate unwanted tissues or cells ex vivo.
Abstract:
The methods, apparatus and compositions disclosed herein concern the detection, identification and/or sequencing of biomolecules, such as nucleic acids or proteins. In certain embodiments of the invention, coded probes comprising a probe molecule attached to one or more nano-barcodes may be allowed to bind to one or more target molecules. After binding and separation from unbound coded probes, the bound coded probes may be aligned on a surface and analyzed by scanning probe microscopy. The nano-barcodes may be any molecule or complex that is distinguishable by SPM, such as carbon nanotubes, fullerenes, submicrometer metallic barcodes, nanoparticles or quantum dots. Where the probes are oligonucleotides, adjacent coded probes hybridized to a target nucleic acid may be ligated together before alignment and SPM analysis. Compositions comprising coded probes are also disclosed herein. Systems for biomolecule analysis may comprise an SPM instrument and at least one coded probe attached to a surface.
Abstract:
The present invention provides methods of using metal nanoparticles 0.5 to 400 nm in diameter to enhance the dose and effectiveness of x-rays or of other kinds of radiation in therapeutic regimes of ablating a target tissue such as tumor. The metal nanoparticles can be administered intravenously, intra-arterially, or locally to achieve specific loading in and around the target tissue. The metal nanoparticles can also be linked to chemical and/or biochemical moieties which bind specifically to the target tissue. The enhanced radiation methods can also be applied to ablate unwanted tissues or cells ex vivo.
Abstract:
The methods, apparatus and compositions disclosed herein concern the detection, identification and/or sequencing of biomolecules, such as nucleic acids or proteins. In certain embodiments of the invention, coded probes comprising a probe molecule attached to one or more nano-barcodes may be allowed to bind to one or more target molecules. After binding and separation from unbound coded probes, the bound coded probes may be aligned on a surface and analyzed by scanning probe microscopy. The nano-barcodes may be any molecule or complex that is distinguishable by SPM, such as carbon nanotubes, fullerenes, submicrometer metallic barcodes, nanoparticles or quantum dots. Where the probes are oligonucleotides, adjacent coded probes hybridized to a target nucleic acid may be ligated together before alignment and SPM analysis. Compositions comprising coded probes are also disclosed herein. Systems for biomolecule analysis may comprise an SPM instrument and at least one coded probe attached to a surface.
Abstract:
The methods, apparatus and compositions disclosed herein concern the detection, identification and/or sequencing of biomolecules, such as nucleic acids or proteins. In certain embodiments of the invention, coded probes comprising a probe molecule attached to one or more nanobarcodes may be allowed to bind to one or more target molecules. After binding and separation from unbound coded probes, the bound coded probes may be aligned on a surface and analyzed by scanning probe microscopy. The nanobarcodes may be any molecule or complex that is distinguishable by SPM, such as carbon nanotubes, fullerenes, submicrometer metallic barcodes, nanoparticles or quantum dots. Where the probes are oligonucleotides, adjacent coded probes hybridized to a target nucleic acid may be ligated together before alignment and SPM analysis. Compositions comprising coded probes are also disclosed herein. Systems for biomolecule analysis may comprise an SPM instrument and at least one coded probe attached to a surface.
Abstract:
The invention relates to a pentopyranosylnucleoside of the formula (I) or of the formula (II) 1 their preparation and use for the production of a therapeutic, diagnostic and/or electronic component.
Abstract:
The invention includes RNA complexes comprising at least three monomeric units of an RNA molecule, each monomeric unit comprising an RNA polymer having first and second helical domains that have respective first and second binding sites, wherein the first binding sites are adapted to binding to one another and are not adapted to bind to the second binding sites, and the second binding sites are adapted to binding to one another and are not adapted to bind to the first binding sites; such that the at least three monomeric units are adapted to self-assemble by forming pairs of cognate interactions and so as to form the RNA complex in a circular closed complex. The invention also includes derivatives of these complexes including aptamers, and analytical methods and devices using same.
Abstract:
The disclosure relates to methods and composition for generating nanoscale devices, systems, and enzyme factories based upon a nucleic acid nanostructure the can be designed to have a predetermined structure.