摘要:
A method of controlling and/or predicting the remaining useful life of an active material actuator, such as a shape memory alloy wire, includes obtaining historical actuation data of an inherent system variable, such as electrical resistance, over a secondary variable, such as time, determining a normal operating envelope having upper and lower bounds based on the data, determining a current profile for a given actuation cycle, and comparing the shape of the current profile to the envelope to determine an out-of-bounds event.
摘要:
A device for selectively controlling and varying a frictional force level at an interface between two bodies, includes a first contact body having at least one surface, a second contact body having at least one surface in physical communication with the first contact body, and an active material in operative communication with a selected one or both of the first contact body and the second contact body, wherein the active material is configured to undergo a change in a property upon receipt of an activation signal wherein the change in a property is effective to change the frictional force level at the interface between the at least one surface of the first contact body and the at least one surface of the second contact body.
摘要:
Methods for varying seal force in active seal assemblies for doors employ active materials that can be controlled and remotely changed to alter the seal effectiveness, wherein the active materials actively change modulus properties such as stiffness, or a combination of modulus and shape in response to an activation signal. In this manner, in seal applications such as a vehicle door application, door opening and closing efforts can be minimized yet seal effectiveness can be maximized.
摘要:
A vehicle flow trip, includes a moveable body portion in physical communication with a vehicle body, and an actuator comprising an active material in operative communication with the vehicle body and the moveable body portion; wherein the active material undergoes a change in a property upon receipt of an activation signal, wherein the change in a property is effective to displace the moveable body portion from either an original position or a deployed position in an airflow stream to the other of the original or the deployed position through motion of the actuator.
摘要:
Active texturing systems adapted for selectively and reversibly modifying the texture of a surface utilizing a plurality of discrete mechanisms in communication with the reconfigurable structure.
摘要:
Actively controlled texturing systems for and methods of selectively and reversibly forming wrinkles, or modifying the amplitude, wavelength, or pattern of existing wrinkles upon a surface using active material actuation.
摘要:
Active texturing systems adapted for selectively and reversibly modifying the texture of a surface utilizing a variably foldable structure in communication with the surface, and active material actuation to enable and/or cause folding.
摘要:
Active texturing systems adapted for selectively and reversibly modifying the texture of a surface utilizing a plurality of discrete mechanisms in communication with the reconfigurable structure.
摘要:
A device for selectively controlling and varying a frictional force level at an interface between two bodies, includes a first contact body having at least one surface, a second contact body having at least one surface in physical communication with the first contact body, and an active material in operative communication with a selected one or both of the first contact body and the second contact body, wherein the active material is configured to undergo a change in a property upon receipt of an activation signal wherein the change in a property is effective to change the frictional force level at the interface between the at least one surface of the first contact body and the at least one surface of the second contact body.
摘要:
A reversible energy absorbing assembly including a shape memory foam disposed within an interior region, wherein the shape memory foam is adapted to expand to an expanded configuration in response to fluid communication with a fluid source. The shape memory foam is a material selected from the group consisting of shape memory alloys and shape memory polymers. Once expanded, the assembly effectively absorbs kinetic energy of an object upon impact with the assembly. The shape memory foam can be thermally activated to restore the original configuration of the energy absorbing assembly. Methods of operating the energy absorbing assembly are also disclosed.