摘要:
Reliability of a semiconductor device having a nonvolatile memory comprising first through third gate electrodes is enhanced. With a flash memory having first gate electrodes (floating gate electrodes), second gate electrodes (control gate electrodes) and third gate electrodes, isolation parts are formed in a self-aligned manner against patterns of a conductor film for forming the third gate electrodes by filling up the respective isolation grooves and a gate insulator film for select nMISes in a peripheral circuit region is formed prior to the formation of the isolation parts. By so doing, deficiency with the gate insulator film for the select nMISes, caused by stress occurring to the isolation parts, can be reduced. Further, with the semiconductor device including the case of stacked memory cells, the patterns of the conductor film for forming the third gate electrodes, serving as a mask for forming the isolation parts in the self-aligned manner, can be formed without misalignment against channels.
摘要:
The present invention enables to avoid a reduction in coupling ratio in a nonvolatile semiconductor memory device. The reduction is coupling ratio is caused due to difficulties in batch forming of a control gate material, an interpoly dielectric film material, and a floating gate material, the difficulties accompanying a reduction in word line width. Further, the invention enables to avoid damage caused in the batch forming on a gate oxide film. Before forming floating gates of memory cells of a nonvolatile memory, a space enclosed by insulating layers is formed for each of the floating gates of the memory cells, so that the floating gate is buried in the space. This structure is realized by processing the floating gates in a self alignment manner after depositing the floating gate material. Therefore, it is unnecessary to perform the batch forming of the control gate material, the interpoly dielectric film material, and the floating gate material in the case of processing the control gates, thereby ensuring adequate interpoly dielectric film capacitance.
摘要:
A technology realizing decreases of capacitance between the adjoining floating gates and of the threshold voltage shift caused by interference between the adjoining memory cells in a nonvolatile semiconductor memory device with the advances of miniaturization in the period following the 90 nm generation. By having the floating gate 3 of a memory cell with an inverse T-shape and the dimension of a part of the floating gate through the control gate 4 and the second insulator film 8 being smaller than the bottom part of the floating gate, the effects of a threshold voltage shift is reduced maintaining the adequate area of the gap between the floating gate 3 and the control gate 4, decreasing the opposing area of the gap of the floating gates 3 underneath the adjoining word lines WL, maintaining the capacity coupling ratio between the floating gate 3 and the control gate, and reducing the opposing area of the gap of the adjoining floating gates 3.
摘要:
Reliability of a semiconductor device having a nonvolatile memory comprising first through third gate electrodes is enhanced. With a flash memory having first gate electrodes (floating gate electrodes), second gate electrodes (control gate electrodes) and third gate electrodes, isolation parts are formed in a self-aligned manner against patterns of a conductor film for forming the third gate electrodes by filling up the respective isolation grooves and a gate insulator film for select nMISes in a peripheral circuit region is formed prior to the formation of the isolation parts. By so doing, deficiency with the gate insulator film for the select nMISes, caused by stress occurring to the isolation parts, can be reduced. Further, with the semiconductor device including the case of stacked memory cells, the patterns of the conductor film for forming the third gate electrodes, serving as a mask for forming the isolation parts in the self-aligned manner, can be formed without misalignment against channels.
摘要:
Suppressing a leakage current is required in a flash memory because the channel length is made shorter with a reduction in the memory cell size. In an AND type memory array having an assist electrode, although the memory cell area has been reduced by the field isolation using a MOS transistor, leakage current in the channel direction becomes greater with a reduction in the memory cell size, resulting in problems arising like deterioration of programming characteristics, an increase in the current consumption, and reading failure. To achieve the objective, in the present invention, electrical isolation is performed by controlling at least one assist electrode of the assist electrodes wired in parallel to be a negative voltage during program and read operations and by making the semiconductor substrate surface in the vicinity of the aforementioned assist electrode non-conductive.
摘要:
The present invention enables to avoid a reduction in coupling ratio in a nonvolatile semiconductor memory device. The reduction is coupling ratio is caused due to difficulties in batch forming of a control gate material, an interpoly dielectric film material, and a floating gate material, the difficulties accompanying a reduction in word line width. Further, the invention enables to avoid damage caused in the batch forming on a gate oxide film. Before forming floating gates of memory cells of a nonvolatile memory, a space enclosed by insulating layers is formed for each of the floating gates of the memory cells, so that the floating gate is buried in the space. This structure is realized by processing the floating gates in a self alignment manner after depositing the floating gate material. Therefore, it is unnecessary to perform the batch forming of the control gate material, the interpoly dielectric film material, and the floating gate material in the case of processing the control gates, thereby ensuring adequate interpoly dielectric film capacitance.
摘要:
The object of the present invention is to provide a new nonvolatile semiconductor memory device and its manufacturing method for the purpose of miniaturizing a virtual grounding type memory cell based on a three-layer polysilicon gate, enhancing the performance, and boosting the yield. In a memory cell according to the present invention, a floating gate's two end faces perpendicular to a word line and channel are partly placed over the top of a third gate via a dielectric film. The present invention can reduce the memory cell area of a nonvolatile semiconductor memory device, increase the operating speed, and enhances the yield.
摘要:
A nonvolatile semiconductor memory device improved with integration degree, in which the gate of the selection transistors is separated on each of active regions, first and second selection transistors are arranged in two stages in the direction of the global bit line, the gates for the selection transistors in each stage are disposed on every other active regions, contact holes are formed in mirror asymmetry with respect to line B—B in the connection portion for the active regions, the gate is connected through the contact hole to the wiring, the adjacent active regions are connected entirely in one selection transistor portion and connected in an H-shape for adjacent two active regions in another selection transistor portion, and the contact hole is formed in the connection portion and connected when the global bit line, whereby the pitch for the selection transistor portion can be decreased in the direction of the global bit line.
摘要:
In a channel region between the source/drain diffusion layers, impurities of the same conductivity type as the well are doped in an area apart from the diffusion regions. By using as a mask the gate formed in advance, tilted ion implantation in opposite directions is performed to form the diffusion layers and heavily impurity doped region of the same conductivity type as the well in a self-alignment manner relative to the gate.
摘要:
In a channel region between the source/drain diffusion layers, impurities of the same conductivity type as the well are doped in an area apart from the diffusion regions. By using as a mask the gate formed in advance, tilted ion implantation in opposite directions is performed to form the diffusion layers and heavily impurity doped region of the same conductivity type as the well in a self-alignment manner relative to the gate.