摘要:
Disclosed is a needle plate for a double-needle sewing machine. The needle plate includes a partition extending downward between the needle holes and provided with a thin plate insertion slit in an intermediate portion thereof, and a thin plate inserted into the thin plate insertion slit. Thus, the rigidity of a thin wall formed between the needle holes is reinforced by providing the partition and the thin plate inserted into the partition between the needle holes, so that stitches can be formed in parallel without breakage of the needle plate even when the interval between the needle holes is less than 2 mm.
摘要:
The present invention relates to a method for preparing a uniformly aligned zeolite supercrystal, which comprises growing a crystal of a zeolite or zeotype material in a uniformly aligned template, whereby said uniformly aligned zeolite supercrystal is prepared, and a uniformly aligned zeolite supercrystal. The uniformly aligned zeolite supercrystal of this invention would be anticipated to maximize its applicability by overcoming the shortcomings of zeolites with random orientation.
摘要:
The present invention provides a method for manufacturing a bowl-shaped structure, a bowl-shaped structure manufactured thereby, and a bowl array using the bowl-shaped structure, wherein the method for manufacturing the bowl-shaped structure comprises the following steps: putting into contact a first substrate, on which a particle alignment layer is formed, and a second substrate so as to transfer the particle alignment layer to the second substrate; forming a particle-thin film complex by coating the particle alignment layer that is transferred on the second substrate with a thin film formation substance; removing a portion of the thin film formation substance from the complex to expose particles, and then removing the exposed particles to form a template having a hole; and forming the bowl-shaped structure by coating a first substance on the surface of the hole of the template and then removing the template.
摘要:
A synthetic gel for crystal growth, which induces only secondary growth from the surface of a silicalite-1 or zeolite beta seed crystal and cannot induce crystal nucleation in the synthetic gel for crystal growth or on the surface of the seed crystal. The synthetic gel contains fumed silica, tetraethylammonium hydroxide (TEAOH), [(NH4)2SiF6], KOH, and H2O, or contains tetraethylorthosilicate (TEOS), tetraethylammonium hydroxide (TEAOH), hydrogen fluoride, and H2O.
摘要:
A synthetic gel for crystal growth, which induces only secondary growth from the surface of a silicalite-1 or zeolite beta seed crystal and cannot induce crystal nucleation in the synthetic gel for crystal growth or on the surface of the seed crystal. The synthetic gel contains fumed silica, tetraethylammonium hydroxide (TEAOH), [(NH4)2SiF6], KOH, and H2O, or contains tetraethylorthosilicate (TEOS), tetraethylammonium hydroxide (TEAOH), hydrogen fluoride, and H2O.
摘要翻译:用于晶体生长的合成凝胶,其仅从硅沸石-1或沸石β晶种的表面仅诱导二次生长,并且不能在用于晶体生长的合成凝胶中或晶种表面上诱导晶体成核。 合成凝胶含有热解二氧化硅,四乙基氢氧化铵(TEAOH),[(NH4)2SiF6],KOH和H2O,或含有原硅酸四乙酯(TEOS),四乙基氢氧化铵(TEAOH),氟化氢和H 2 O.
摘要:
The present application relates to a hydrogen ion transport membrane, which is formed by using a porous thin film having a plurality of holes which are regularly aligned, a membrane for generating hydrogen, and a method for manufacturing the hydrogen ion transport membrane and the membrane for generating hydrogen.
摘要:
The present invention relates to a novel method for producing titanium dioxide particles, and titanium dioxide particles produced thereby, and more specifically, to a novel method for producing titanium dioxide particles capable of producing titanium dioxide particles having uniform particle size through chemical reaction at a temperature equal to or lower than room temperature and can easily control the size of titanium dioxide particles, and titanium dioxide particles produced thereby, having a uniform particle size.
摘要:
Provided is a method for joining two strands of second-generation high-temperature superconducting wire, each of which includes a substrate, a buffer layer, a superconducting layer and a stabilizer layer. The method comprises: partially removing each of the stabilizer layers to expose a portion of the superconducting layer; bringing the exposed portions of the superconducting layers into contact with each other and fixing the superconducting layers to each other; heating the strands of superconducting wire to the melting point of the superconducting layers to melt-diffuse the superconducting layers in contact with each other and to join the strands of superconducting wire together; and oxidizing the junction between the strands of superconducting wire in an oxygen atmosphere (‘oxygenation annealing’). The oxygenation annealing restores the superconducting properties of the superconducting wires lost during the melting diffusion. According to the method, the superconducting layers are brought into direct contact with each other without any mediating material therebetween, followed by melting diffusion. Accordingly, the method enables the fabrication of sufficiently long superconducting wires without any substantial contact resistance, compared to non-superconducting joining. Particularly, the oxygen partial pressure is adjusted to a pressure close to a vacuum during the melting diffusion to lower the eutectic melting point of the superconductors, so that the superconducting wires can be joined together while protecting the constituent layers (e.g., the stabilizer layers containing silver (Ag)) from melting.