摘要:
An MTJ element is formed between orthogonal word and bit lines. The bit line is a composite line which includes a high conductivity layer and a soft magnetic layer under the high conductivity layer. During operation, the soft magnetic layer concentrates the magnetic field of the current and, due to its proximity to the free layer, it magnetically couples with the free layer in the MTJ. This coupling provides thermal stability to the free layer magnetization and ease of switching and the coupling may be further enhanced by inducing a shape or crystalline anisotropy into the free layer during formation.
摘要:
Systems and methods for realizing current drivers without current or voltage feedback for devices that require accurate current drive with zero standby current has been disclosed. In a preferred embodiment of the invention this current driver is applied for write circuits for MRAMs. A fast and accurate reference current is generated by diode voltage divided by resistor without any feedback. The diode current is not fed back from the reference current. The diode current is generated from a regulated voltage. Temperature compensation of the write current is inherently built in the diode current reference. Fine-tuning of the temperature coefficient is achieved by mixing poly and diffusion resistors. A switch inserted in the current driver can turn on the driver fast and without a need for standby current. Leading boost in the current driver can fast charge the large coupling capacitance of word and bit lines and speed up write timing.
摘要:
An MTJ MRAM cell is formed between ultra-thin orthogonal word and bit lines of high conductivity material whose thickness is less than 100 nm. Lines of this thickness produce switching magnetic fields at the cell free layer that are enhanced by a factor of approximately two for a given current. Because the lines require thinner depositions, there is no necessity of removing material by CMP during patterning and polishing. Therefore, there is a uniform spacing between the lines and the cell free layer.
摘要:
An MTJ MRAM cell is formed between ultra-thin orthogonal word and bit lines of high conductivity material whose thickness is less than 100 nm. Lines of this thickness produce switching magnetic fields at the cell free layer that are enhanced by a factor of approximately two for a given current. The fabrication of a cell with such thin lines is actually simplified as a result of the thinner depositions because the fabrication process eliminates the necessity of removing material by CMP during patterning and polishing, thereby producing uniform spacing between the lines and the cell free layer.
摘要:
An MTJ is disclosed in which the free layer and reference layer have a vortex magnetization state that is formed with a clockwise or counterclockwise rotation. The MTJ has a low aspect ratio elliptical shape and the magnetic layers have a dopant that is one of C, N, B, Zr, Ta, Pt, Nb, or Hf to facilitate the flux closure configuration. The vortex magnetization is induced by applying a reverse magnetic field in a direction opposite to the remnant magnetization in a magnetic layer. An anti-ferromagnetic layer is set in an AFM phase after the vortex state is induced in the adjacent reference layer. Switching the vortex state in the free layer involves applying a first field in a first direction to break the vortex and then applying a smaller second field in a reverse direction to a critical point where a vortex of opposite spin is induced.
摘要:
An MTJ MRAM cell is formed between or below an intersection of ultra-thin orthogonal word and bit lines of high conductivity material whose thickness is less than 100 nm. Lines of this thickness produce switching magnetic fields at the cell free layer that are enhanced by a factor of approximately two for a given current. The fabrication of a cell with such thin lines is actually simplified as a result of the thinner depositions because the fabrication process eliminates the necessity of removing material by CMP during patterning and polishing, thereby producing uniform spacing between the lines and the cell free layer.
摘要:
A sense amplifier comprising a reference current developed from a programmed and a non-programmed reference cell is used to read a signal from a magnetic random access memory (MRAM) comprising magnetic tunnel junction (MTJ) cells. The average current is determined from reference cells in as few as one sense amplifier and as many as n sense amplifiers, and is an average current between the programmed reference cell and the non-programmed reference cell that approximates the mid point between the two states. The sense amplifier can be fully differential or a non differential sense amplifier.
摘要:
A spin transfer oscillator (STO) device is disclosed with a giant magnetoresistive (GMR) junction comprising a magnetic resistance layer (MRL)/spacer/magnetic oscillation layer (MOL) configuration, and a MR sensor including a sensing layer/junction layer/reference layer configuration. MOL and sensing layer are magnetostatically coupled and separated by a conductive spacer. MRL has perpendicular magnetic anisotropy while MOL and sensing layer have a Mst (saturation magnetization×thickness) value within ±50% of each other. When a magnetic field is applied perpendicular to the planes of the MOL and a high density current flows from the conductive spacer to the MRL, a MOL oscillation state with a certain frequency is induced. Consequently, the sensing layer oscillates with a similar RF frequency and when a low density current flows across the MR sensor, an AC voltage signal is generated to determine the sensing layer frequency that can be varied by adjusting the applied field.
摘要:
A spin transfer oscillator (STO) device is disclosed with a giant magnetoresistive (GMR) junction comprising a magnetic resistance layer (MRL)/spacer/magnetic oscillation layer (MOL) configuration, and a MR sensor including a sensing layer/junction layer/reference layer configuration. MOL and sensing layer are magnetostatically coupled and separated by a conductive spacer. MRL has perpendicular magnetic anisotropy while MOL and sensing layer have a Mst (saturation magnetization×thickness) value within ±50% of each other. When a magnetic field is applied perpendicular to the planes of the MOL and a high density current flows from the conductive spacer to the MRL, a MOL oscillation state with a certain frequency is induced. Consequently, the sensing layer oscillates with a similar RF frequency and when a low density current flows across the MR sensor, an AC voltage signal is generated to determine the sensing layer frequency that can be varied by adjusting the applied field.
摘要:
Systems and methods for realizing current drivers without current or voltage feedback for devices that require accurate current drive with zero standby current has been disclosed. In a preferred embodiment of the invention this current driver is applied for write circuits for MRAMs. A fast and accurate reference current is generated by diode voltage divided by resistor without any feedback. The diode current is not fed back from the reference current. The diode current is generated from a regulated voltage. Temperature compensation of the write current is inherently built in the diode current reference. Fine-tuning of the temperature coefficient is achieved by mixing poly and diffusion resistors. A switch inserted in the current driver can turn on the driver fast and without a need for standby current. Leading boost in the current driver can fast charge the large coupling capacitance of word and bit lines and speed up write timing.