摘要:
The present application provides a MOSFET and a method for manufacturing the same. The MOSFET comprises: a semiconductor substrate; a first buried insulating layer on the semiconductor substrate; a back gate formed in a first semiconductor layer which is on the first buried insulating layer; a second buried insulating layer on the first semiconductor layer; source/drain regions formed in a second semiconductor layer which is on the second buried insulating layer; a gate on the second semiconductor layer; and electrical contacts on the source/drain regions, the gate and the back gate, wherein the back gate is only under a channel region and one of the source/drain regions and not under the other of the source/drain regions, and a common electrical contact is formed between the back gate and the one of the source/drain regions. The MOSFET improves an effect of suppressing short channel effects by an asymmetric back gate, and reduces a footprint on a wafer by using the common conductive via.
摘要:
The present application discloses a MOSFET and a method for manufacturing the same. The MOSFET is formed on an SOI wafer, comprising: a shallow trench isolation for defining an active region in the semiconductor layer; a gate stack on the semiconductor layer; a source region and a drain region in the semiconductor layer on both sides of the gate stack; a channel region in the semiconductor layer and sandwiched by the source region and the drain region; a back gate in the semiconductor substrate; a first dummy gate stack overlapping with a boundary between the semiconductor layer and the shallow trench isolation; and a second dummy gate stack on the shallow trench isolation, wherein the MOSFET further comprises a plurality of conductive vias which are disposed between the gate stack and the first dummy gate stack and electrically connected to the source region and the drain region respectively, and between the first dummy gate stack and the second dummy gate stack and electrically connected to the back gate. The MOSFET avoids short circuit between the back gate and the source/drain regions by the dummy gate stacks.
摘要:
The present disclosure discloses a MOSFET and a method for manufacturing the same, wherein the MOSFET comprises: an SOI wafer comprising a semiconductor substrate, a buried insulating layer on the semiconductor substrate, and a semiconductor layer on the buried insulating layer; a gate stack on the semiconductor layer; a source region and a drain region in the semiconductor layer on both sides of the gate stack; and a channel region in the semiconductor layer and located between the source region and the drain region, wherein the MOSFET further comprises a back gate which is located in the semiconductor substrate and has a first doped region as a lower portion of the back gate and a second doped region as an upper portion of the back gate, and the second doped region of the back gate is self-aligned with the gate stack. The MOSFET can adjust a threshold voltage by changing doping type and doping concentration of the back gate.
摘要:
A method of manufacturing a semiconductor device, wherein thermal annealing of the source/drain regions is performed before reverse Halo implantation to form a reverse Halo implantation region. The method comprises: removing the dummy gate to expose the gate dielectric layer, so as to form an opening; performing reverse Halo implantation on the substrate via the opening, so as to form a reverse Halo implantation region in the channel of the device; activating the dopants in the reverse Halo implantation region by annealing; and performing subsequent device processing. Deterioration of the gate stack due to the reverse Halo ions implantation may be avoided by the present invention, such that the reverse Halo ions implantation may be applied to the device with a metal gate stack, and the short channel effects may be alleviated and controlled, thereby the performance of the device is enhanced.
摘要:
The present invention provides a method for manufacturing a semiconductor structure, comprising the steps of: providing a semiconductor substrate, forming an insulating layer on the semiconductor substrate, and forming a semiconductor base layer on the insulating layer; forming a sacrificial layer and a spacer surrounding the sacrificial layer on the semiconductor base layer, and etching the semiconductor base layer by taking the spacer as a mask to form a semiconductor body; forming a dielectric film on sidewalls of the semiconductor body; removing the sacrificial layer and the semiconductor body located under the sacrificial layer to form a first semiconductor fin and a second semiconductor fin; and forming a retrograde doped well structure on the inner walls of the first semiconductor fin and the second semiconductor fin, wherein the inner walls thereof are opposite to each other. Correspondingly, the present invention further provides a semiconductor structure. In the present invention, a retrograde doped well structure is formed on the sidewalls of the two semiconductor fins that are opposite to each other, so that the width of the source/drain depletion layer may be effectively reduced, and thereby the short channel effect is reduced.
摘要:
A MOSFET with a graphene nano-ribbon, and a method for manufacturing the same are provided. The MOSFET comprises an insulating substrate; and an oxide protection layer on the insulating substrate. At least one graphene nano-ribbon is embedded in the oxide protection layer and has a surface which is exposed at a side surface of the oxide protection layer. A channel region is provided in each of the at least one graphene nano-ribbon. A source region and a drain regions are provided in each of the at least one graphene nano-ribbon. The channel region is located between the source region and the drain region. A gate dielectric is positioned on the at least one graphene nano-ribbon. A gate conductor on the gate dielectric. A source and drain contacts contact the source region and the drain region respectively on the side surface of the oxide protection layer.
摘要:
The present disclosure provides a semiconductor device and a method for manufacturing the same. The semiconductor device comprises: a semiconductor layer; a first fin being formed by patterning the semiconductor layer; and a second fin being formed by patterning the semiconductor layer, wherein: top sides of the first and second fins have the same height; bottom sides of the first and second fins adjoin the semiconductor layer; and the second fin is higher than the first fin. According to the present disclosure, a plurality of semiconductor devices with different dimensions can be integrated on the same wafer. As a result, manufacturing process can be shortened and manufacturing cost can be reduced. Furthermore, devices with different driving capabilities can be provided.
摘要:
The present invention discloses a semiconductor device and a manufacturing method thereof. The method comprises the steps of providing a substrate on which a graphene layer or carbon nanotube layer is formed; exposing part of the graphene layer or carbon nanotube layer after forming a gate structure on the graphene layer or carbon nanotube layer, wherein the gate structure comprises a gate stack, a spacer and a cap layer, the cap layer is located on the gate stack, and the spacer surrounds the gate stack and the cap layer; epitaxially growing a semiconductor layer on the exposed graphene layer or carbon nanotube layer; and forming a metal contact layer on the semiconductor layer. In the present invention, the semiconductor layer is formed on the graphene layer or carbon nanotube layer, and then the metal contact layer is formed on the semiconductor layer, instead of forming the metal contact layer directly from the graphene layer or carbon nanotube layer. This facilitates to form the self-aligned source and drain contact plugs.
摘要:
An S/D region including a first region and a second region is provided. The first region is located, with at least a partial thickness, in the substrate. The second region is formed on the first region and made of a material different from that of the first region. A method for forming an S/D region is further provided, and the method includes: forming trenches at both sides of a gate stack structure in a substrate; forming a first semiconductor layer, wherein at least a part of the first semiconductor layer is filled into the trenches; and forming a second semiconductor layer on the first semiconductor layer, wherein the second semiconductor layer is made of a material different from that of the first semiconductor layer. A contact hole and a forming method thereof are also provided which may increase the contact area between a contact hole and a contact region, and reduce the contact resistance.
摘要:
The present invention provides a method for manufacturing a semiconductor structure, which comprises: providing an SOI substrate, and forming a gate structure on the SOI substrate; etching an SOI layer and a BOX layer of the SOI substrates on both sides of the gate structure, so as to form trenches exposing the BOX layer and extending partially into the BOX layer; forming metal sidewall spacers on sidewalls of the trenches, wherein the metal sidewall spacers is in contact with the SOI layer under the gate structure; forming an insulating layer filling partially the trenches, and forming a dielectric layer to cover the gate structure and the insulating layer; etching the dielectric layer to form first contact through holes that expose at least partially the insulating layer, and etching the insulating layer from the first contact through holes to form second contact through holes that expose at least partially the metal sidewall spacer; filling the first contact through holes and the second contact through holes to form contact vias, which are in contact with the metal sidewall spacers. The method provided by the present invention is capable of improving performance of semiconductor devices and alleviating manufacturing difficulty at the mean time.