摘要:
A thermal priority fuel cell power plant includes a cell stack assembly for generating an electrical power output. The cell stack assembly includes an anode, a cathode, and a waste heat recovery loop. The waste heat recovery loop is configured to remove waste heat generated from the electrochemical reaction and is thermally coupled to the cell stack assembly for managing the waste heat of the cell stack assembly and for supplying thermal power to a thermal load demand. The waste heat recovery loop includes a heat exchanger in heat exchange relationship with the coolant outlet conduit and the thermal load demand. A controller is operatively associated with the cell stack assembly and the waste heat recovery loop. The controller controls the operation of the cell stack assembly by adjusting a fuel cell power plant parameter responsive to the thermal load demand.
摘要:
According to an example embodiment, a method of making a fuel cell component includes permeating at least a portion of a component layer with a polymer. The portion of the component layer is adjacent an edge of the component layer. Some of the polymer is allowed to extend beyond the edge to thereby establish a flap beyond the edge of the component layer. A fuel cell component includes a component layer having a portion adjacent an edge of the layer that is impregnated with a polymer material and a flap of the polymer material extending beyond the edge.
摘要:
An illustrative example embodiment of a fuel cell component includes a graphite substrate, a polytetrafluoroethylene (PTFE) layer adjacent a portion of the graphite substrate, and a plurality of segments of acrylic adhesive between the portion of the graphite substrate and the PTFE layer. The acrylic adhesive secures the PTFE layer to the portion of the graphite substrate. There is spacing between adjacent ones of the segments.
摘要:
An illustrative example fuel cell component includes a plate with a plurality of flow channels in at least one side of the plate. Each of the flow channels has a length between an inlet and an outlet. Each of the flow channels has a width and a depth, which are transverse to the length. At least some of the flow channels include a portion near the inlet and the width or the depth of the portion is greater than the width or depth along a majority of the length of those flow channels.
摘要:
A fuel cell includes a fuel cell stack. A pressure plate is arranged on one side of the fuel cell stack. The pressure plate includes a hole, and a tie rod assembly has a tie rod received in the hole. A nut with a conical surface is secured to the tie rod. An isolator is arranged in the hole between the tie rod assembly and the pressure plate. The isolator has a conical portion, and the conical surface engages the conical portion to provide a conical interface. The tie rod assembly applies a clamp load on the fuel cell stack via the conical interface.
摘要:
A fuel cell includes a fuel cell stack. A pressure plate is arranged on one side of the fuel cell stack. The pressure plate includes a hole, and a tie rod assembly has a tie rod received in the hole. A nut with a conical surface is secured to the tie rod. An isolator is arranged in the hole between the tie rod assembly and the pressure plate. The isolator has a conical portion, and the conical surface engages the conical portion to provide a conical interface. The tie rod assembly applies a clamp load on the fuel cell stack via the conical interface.
摘要:
An illustrative example fuel cell cooler plate includes a first side configured to be received adjacent a fuel cell component and a second side facing opposite the first side. The first side defines a first surface area of the plate. An edge is transverse to the first side and the second side. The edge has a surface area that is less than the first surface area. A first coolant passage within the plate is closer to the second side than the first side. A second coolant passage is between the first side and the first coolant passage. The second coolant passage is in a heat exchange relationship with the first coolant passage.
摘要:
An illustrative example controller for a fuel cell power plant includes at least one processor and memory associated with the processor. The processor is configured to control operation of the fuel cell power plant during an islanded mode of operation wherein the fuel cell power plant provides output power to a load. The processor is configured to control the operation of the fuel cell power plant in the islanded mode by adjusting a droop gain of the controller to change the output power of the fuel cell power plant in response to a change in demand from the load. While adjusting the droop gain, the processor is configured to maintain a portion of the demand from the load met by the output power of the fuel cell power plant within a predetermined allocation of islanded mode load sharing assigned to the fuel cell power plant, maintain a ramp up rate of the output power of the fuel cell power plant within a predetermined maximum ramp up capability of the fuel cell power plant, and maintain a frequency of the output power of the fuel cell power plant within a predetermined range.
摘要:
An illustrative example fuel cell manifold assembly includes a metal manifold pan. A polymer material liner that is self-supporting includes a primary wall situated adjacent an interior of the manifold pan. The liner has a channel around a periphery of the liner and a portion of the manifold is received in the channel. A reactant conduit adapter is received through respective openings in the manifold pan and the liner. The reactant conduit adaptor includes a flange that is received against an interior surface on the primary wall of the liner with an interface between the flange and the interior surface being sealed. Another portion of the reactant conduit adaptor is adjacent an exterior of the manifold pan that faces in an opposite direction from the interior surface on the primary wall.
摘要:
Embodiments are disclosed that relate to increasing heat transfer in a steam reformer. For example, one disclosed embodiment provides a steam reformer including an outer wall and an inner wall which includes a step extending outward toward the outer wall and downward toward a bottom of the steam reformer at a position between a top of the steam reformer and the bottom of the steam reformer. The steam reformer further includes a reaction chamber disposed between the outer wall and the inner wall.