摘要:
A radiation detector module includes a frame, a module circuit board connected to the frame, detector units that each include radiation sensors disposed above the frame and electrically connected to the module circuit board, and an optically and infrared radiation opaque, X-ray transparent, electrically insulating detector shield covering a top surface and at least one side surface of the radiation sensors.
摘要:
Various aspects include circuits and methods for use in X-ray detectors for obtaining time information regarding when an indication of an X-ray photon's energy, such as a CSA output voltage, and using the time information to obtain temporal-spectral data regarding an X-ray photon detection. The temporal-spectral data may be used to determine the X-ray photon's energy, to detect and account for multiple X-ray photon detection events (“pile ups”), and/or accommodating detection events in which charge is shared between two pixel detectors.
摘要:
A radiation detector unit includes an interposer, at least one radiation sensor bonded to a front side of an interposer, an application-specific integrated chip (ASIC) bonded to a backside of the interposer, a carrier board bonded to the backside of the interposer and located on a backside of the ASIC, and at least one flex cable assembly attached to a respective side of the carrier board.
摘要:
Various aspects include methods for use in X-ray detectors for adjusting count measurements from pixel detectors within a pixelated detector module to correct for the effects of pileup events that occur when more than one photon is absorbed in a pixel detector during a deadtime of the detector system. In various embodiments, count measurements may be obtained at two different X-ray tube currents, from which the detector system deadtime may be calculated based on the two count measurements and a ratio of the two X-ray tube currents. Using the calculated deadtime, a pileup correction factor may be determined appropriate for the behavior of the detector system in response to pileup events. The pileup correction factor may be applied to pixel detector count values after the counts have been corrected for pixel-to-pixel differences using a flat field correction.
摘要:
An electro-optic modulator includes a doped semiconductor crystal having a crystallographic surface having an amplitude modulation orientation, a first metal electrode located on a first surface of the doped semiconductor crystal, a second metal electrode located on a second surface of the doped semiconductor crystal, and accumulation space charge regions located within surface regions of the doped semiconductor crystal that are proximal to the first metal electrode and the second metal electrode and including excess charge carriers of a same type as majority charge carriers of the doped semiconductor crystal.
摘要:
A radiation detector includes a semiconductor substrate which contains front and rear major surfaces and at least one side surface, a guard ring and a plurality of anode electrode pixels located over the rear surface of the semiconductor substrate, where each anode electrode pixel is formed between adjacent pixel separation regions, a side insulating layer formed on the at least one side surface of the semiconductor substrate, a cathode electrode located over the front major surface of the semiconductor substrate, and an electrically conductive cathode extension formed over at least a portion of side insulating layer, where the cathode extension contacts an edge of the cathode electrode. Further embodiments include various methods of making such semiconductor radiation detector.
摘要:
A method is provided for fabricating contacts on semiconductor substrates by direct lithography that results in durable adhesion of the electrodes, increased interpixel resistance and the electrodes which act as a blocking contact, thereby providing for improved energy resolution in a resultant radiation detector.
摘要:
A method is provided for compounding, homogenizing and consolidating compounds. In one embodiment, the charge components are mixed in a controlled addition process, then the newly-formed compound is heated to become totally molten, followed by a rapid quench at room temperature. In an alternate embodiment, the components are supplied with an excess of one component acting as a solvent, heated to dissolve additional components, and then the solvent is separated from the compound to produce homogeneous consolidated compounds. The methods herein are advantageously applied to provide an economical and fast process for producing CdTe, CdZnTe and ZnTe compounds.
摘要:
A method is provided for compounding, homogenizing and consolidating compounds. In one embodiment, the charge components are mixed in a controlled addition process, then the newly-formed compound is heated to become totally molten, followed by a rapid quench at room temperature. In an alternate embodiment, the components are supplied with an excess of one component acting as a solvent, heated to dissolve additional components, and then the solvent is separated from the compound to produce homogeneous consolidated compounds. The methods herein are advantageously applied to provide an economical and fast process for producing CdTe, CdZnTe and ZnTe compounds.
摘要:
An X-ray detector module of a multi-module X-ray detector array having a local processing unit configured to provide real-time control and computational capabilities at the x-ray detector module. In various embodiments, by providing these capabilities in the detector module itself, as opposed to a component located downstream of the detector module, there may be an immediate cost reduction, opportunities to include additional features, and performance improvement opportunities not otherwise practical to implement in conventional X-ray imaging systems.