Abstract:
An absorbent for selective removal of hydrogen sulfide from a fluid stream comprises an aqueous solution comprising a) a tertiary amine; b) an aminic pH promoter selected from the compounds mentioned in the description; where the molar ratio of b) to a) is in the range from 0.05 to 1.0; and c) an acid having a pKA of less than 6 in such an amount that the pH of the aqueous solution measured at 120° C. is 7.9 to less than 8.8. Also described is a process for removing acidic gases from a fluid stream, in which the fluid stream is contacted with the absorbent. The absorbent is notable for a low regeneration energy.
Abstract:
The present disclosure provides improved systems, assemblies and methods to remove and recover CO2 from emissions. More particularly, the present disclosure provides improved membrane contactors configured to remove CO2 from flue gas by temperature swing absorption. In exemplary embodiments, the present disclosure provides a novel hollow fiber membrane contactor that integrates absorption and stripping using a nonvolatile reactive absorbent (e.g., 80% polyamidoamine (PAMAM) dendrimer generation 0, and 20% of an ionic liquid (IL)). Equilibrium CO2 absorption in the nonvolatile viscous mixed absorbent is as high as 6.37 mmolCO2/g absorbent in the presence of moisture at 50° C. A novel membrane contactor is provided for CO2 absorption and stripping via a process identified as temperature swing membrane absorption (TSMAB). The contactor integrates non-dispersive gas absorption and hot water-based CO2 stripping in one device/assembly containing two sets of commingled hollow fibers.
Abstract:
A method is described for separating CO2 and/or H2S from a mixed gas stream by contacting the gas stream with a non-aqueous, liquid absorbent medium of a primary and/or secondary aliphatic amine, preferably in a non-aqueous, polar, aprotic solvent under conditions sufficient for sorption of at least some of the CO2. The solution containing the absorbed CO2 can then be treated to desorb the acid gas. The method is usually operated as a continuous cyclic sorption-desorption process, with the sorption being carried out in a sorption zone where a circulating stream of the liquid absorbent contacts the gas stream to form a CO2-rich sorbed solution, which is then cycled to a regeneration zone for desorption of the CO2 (advantageously at 0.5:1 (approaching 1:1) may be achieved.
Abstract:
This invention provides novel compositions comprising substituted polyamines as acid gas scrubbing solutions and methods of using the compositions in an industrial system. The invention relates to the use of such polyamine compounds in industrial processes to remove acidic contaminants from natural and industrial fluid streams, such as natural gas, combustion gas, natural gas, synthesis gas, biogas, and other industrial fluid streams. The compositions and methods of the invention are useful for removal, absorption, or sequestration of acidic contaminants and sulfide contaminants including CO2, H2S, RSH, CS2, COS, and SO2.
Abstract:
The present disclosure provides methods and apparatuses of recovering CO2 from a gas stream. The methods regenerate CO2 with high regeneration efficiencies, thereby lowering the overall energy cost for CO2 capture.
Abstract:
An amino-siloxane composition is presented. The amino-siloxane composition includes structure (I): wherein R1 is independently at each occurrence a C1-C5 aliphatic radical; R2 is a C3-C4 aliphatic radical; R3 is a C1-C5 aliphatic radical or R4, wherein R4 comprises structure (II): and X is an electron donating group. Methods of reducing an amount of carbon dioxide in a process stream using the amino-siloxane composition are also presented.
Abstract:
Embodiments of the present disclosure are directed to systems and methods for removing formaldehyde from indoor air. Some embodiments include flowing an indoor airflow over and/or through a solid supported amine filtering medium, such that, at least a portion of formaldehyde entrained in the indoor airflow is removed therefrom. Some other embodiments include systems having one or more fans for providing velocity to one and/or another airflows (e.g., airflows to/from a formaldehyde filter).
Abstract:
The present disclosure provides improved systems, assemblies and methods to remove and recover CO2 from emissions. More particularly, the present disclosure provides improved membrane contactors configured to remove CO2 from flue gas by temperature swing absorption. In exemplary embodiments, the present disclosure provides a novel hollow fiber membrane contactor that integrates absorption and stripping using a nonvolatile reactive absorbent (e.g., 80% polyamidoamine (PAMAM) dendrimer generation 0, and 20% of an ionic liquid (IL)). Equilibrium CO2 absorption in the nonvolatile viscous mixed absorbent is as high as 6.37 mmolCO2/g absorbent in the presence of moisture at 50° C. A novel membrane contactor is provided for CO2 absorption and stripping via a process identified as temperature swing membrane absorption (TSMAB). The contactor integrates non-dispersive gas absorption and hot water-based CO2 stripping in one device/assembly containing two sets of commingled hollow fibers.
Abstract:
A cyclic process for separating CO2 from a gas stream by contacting the gas stream at a first temperature and typically at a pressure of at least 30 barg with a CO2 sorbent comprising an ionic liquid containing a potentially nucleophilic carbon atom bearing a relatively acidic hydrogen atom bonded to a potentially nucleophilic carbon atom to sorb CO2 into the solution and regenerating the ionic liquid absorbent by treating the sorbent under conditions including a second, typically higher, temperature, to cause desorption of at least a portion of the CO2 and to regenerate the ionic liquid.
Abstract:
A carbon dioxide separating and capturing apparatus includes: a casing including inner space through which a to-be-treated gas containing carbon dioxide flows; a carbon dioxide adsorbing material disposed in the inner space, the carbon dioxide adsorbing material adsorbing and separating carbon dioxide from the to-be-treated gas flowing through the inner space; and a steam generator configured to generate steam in the inner space and release the steam in the inner space, the steam desorbing and capturing the carbon dioxide adsorbed to the carbon dioxide adsorbing material.