Abstract:
An electromagnetic valve manifold includes spacers and pressure reducing valves. Each spacer includes an attachment surface to which a body of the pressure reducing valve is attached. The body includes a first surface, a second surface, and a connecting surface, which connects the first and second surfaces to each other. A pressure gauge is provided on the connecting surface. The width of the body is smaller than the size of the pressure gauge in the width direction of the body. The bodies include one or more first bodies and one or more second bodies. The first surface of each first body is attached to the attachment surface. The second surface of each second body is attached to the attachment surface of one of the spacers different from the spacer to which the first body is attached. The first bodies and the second bodies are arranged alternately in the arrangement direction.
Abstract:
In order to improve a control plate (10) for mounting between two hydraulic units (62, 64), in particular between two hydraulic units of a transmission, including an intermediate layer (12) having apertures (32, 34) for guiding fluid, and metal sealing layers (22, 24) that are arranged on either side of the intermediate layer and have apertures for guiding fluid, and sealing beads (112, 114, 116, 118) which run linearly between the apertures, for sealing between the intermediate layer and the opposing hydraulic units on either side thereof, such that an optimum seal is possible between the intermediate layer and the hydraulic units, it is proposed that, for sealing, the sealing beads abut by means of their bead feet (132, 134) against the intermediate layer and have on their side remote from the intermediate layer a bead crest (152) for linearly sealing to the respective hydraulic unit, and in that the sealing beads in the sealing layers are formed such that when the sealing beads are compressed in the course of installing the control plate between the hydraulic units a plasto-elastic deformation is established, at least in certain regions, and a sealing force above a predetermined minimum sealing force is achieved over the entire linear extent of the respective bead crest.
Abstract:
A medical fluid pneumatic manifold system includes a plurality of pump and valve chambers for controlling a flow of medical fluid, a header including a plurality of pneumatic passageways, each passageway in pneumatic communication with one of the pump or valve chambers, a plurality of electrically actuated pneumatic valves, and a plate defining a plurality of pneumatic apertures, wherein the header and the plurality of electrically actuated pneumatic valves are separately attached to the plate, such that each pneumatic aperture in the plate is placed in pneumatic communication with one of the plurality of pneumatic passageways of the header and one of the electrically actuated pneumatic valves.
Abstract:
A method of pneumatically operating a dialysis system includes (i) pumping air in a first valve state from a pneumatic pump to operate a component of the dialysis system, and (ii) recirculating air in a second valve state by pumping air from an outlet of the pneumatic pump to an inlet of the pneumatic pump to minimize at least one of a noise pitch or noise amplitude when switching from the second valve state to the first valve state.
Abstract:
A dialysis fluid pressure manifold system includes a plurality of pump and valve chambers controlling a flow of dialysis fluid; a header including a plurality of pneumatic passageways, each passageway in pneumatic communication with one of the pump or valve chambers; a plurality of electrically actuated pneumatic valves; and a plate defining a plurality of pneumatic apertures, each pneumatic aperture in pneumatic communication with one of the plurality of electrically actuated pneumatic valves, the plate providing the apertures each with an o-ring seal for airtight connection with the pneumatic passageways of the header.
Abstract:
A system and method for a valve for an expandable gas or fluid valve is disclosed. The valve comprises an electromagnetic switch with a male connector on one face, and a female connector on an opposite face. The electromagnetic switch has a passageway connecting the male connector with the female connector. An output port is switchably connected to the passageway by the electromagnetic switch. The male connector on one face can be coupled to the female connector on another electromagnetic switch, forming a line or chain of electromagnetic switches.
Abstract:
A hydraulic valve stack for a work machine is disclosed. The hydraulic valve stack has a base with a first mounting surface and a second mounting surface. The base is connectable to the work machine and has at least one fluid passageway extending through the base from the first mounting surface to the second mounting surface. The hydraulic valve stack also has a permanent valve assembly configured to control a permanent function of the work machine and an optional valve assembly configured to control an optional function of the work machine. The permanent valve assembly is connectable to the first mounting surface of the base, while the optional valve assembly is connectable to the second mounting surface of the base. Each of the permanent and the optional valve assemblies have at least one fluid passageway in communication with the at least one fluid passageway of the base.
Abstract:
A system and method for a valve for an expandable gas or fluid valve is disclosed. The valve comprises an electromagnetic switch with a male connector on one face, and a female connector on an opposite face. The electromagnetic switch has a passageway connecting the male connector with the female connector. An output port is switchably connected to the passageway by the electromagnetic switch. The male connector on one face can be coupled to the female connector on another electromagnetic switch, forming a line or chain of electromagnetic switches.
Abstract:
A valve construction kit is provided for the production of valve clusters respectively having several juxtaposed plate-like valve units. Each valve unit comprises a core module having a valve spool and a frame-like encasing element surrounding the core module. The construction kit furthermore comprises several encasing elements differing at least as regards the consistency of the their material and of different types so that it is possible to produce valve units for different applications owing to the selected combination with core modules.
Abstract:
A valve island that has the PC board captured in the expansion station is disclosed. The PC board is held into the expansion station by a feature on the PC board that interferes with the inside of the wire-way of the expansion station sub-base