Abstract:
Provided is an energy storage structure, comprising a housing and a piston. An accommodating cavity and a piston cylinder part communicating with each other are arranged within the housing. The piston is slidably and sealingly arranged within the piston cylinder part for transferring impact energy. A self-pressure of an energy storage medium, arranged within the accommodating cavity and the piston cylinder part, acts on the piston, tending to push the piston to move. An energy storage structure provided by the present invention has a simple structure, is convenient for use, and can ensure that a thrust or impact force remains unchanged or slightly changes during operation, to achieve stable release of potential energy. Moreover, the adjustment of the thrust or impact force can be achieved by changing the temperature of the energy storage medium in the accommodating cavity, thereby achieving change in total impact energy of the energy storage structure.
Abstract:
A storage device for storing a gas, in particular for storing gaseous hydrogen, having a first chamber for receiving the gas and a locking device for closing and opening a flow path connected to the first chamber. The storage device further has an adjustment unit for volume change of the first chamber. Further there is disclosed a gas storage unit which is the storage device wherein the gas is stored in the first chamber and to a method for the at least partial filling or emptying of the gas storage unit.
Abstract:
In various embodiments, lined underground reservoirs and/or insulated pipeline vessels are utilized for storage of compressed fluid in conjunction with energy storage and recovery systems.
Abstract:
Described herein is a portable storage device that stores a hydrogen fuel source. The storage device includes a bladder that contains the hydrogen fuel source and conforms to the volume of the hydrogen fuel source. A housing provides mechanical protection for the bladder. The storage device also includes a connector that interfaces with a mating connector to permit transfer of the fuel source between the bladder and a device that includes the mating connector. The device may be a portable electronics device such as a laptop computer. Refillable hydrogen fuel source storage devices and systems are also described. Hot swappable fuel storage systems described herein allow a portable hydrogen fuel source storage device to be removed from a fuel processor or electronics device it provides the hydrogen fuel source to, without shutting down the receiving device or without compromising hydrogen fuel source provision.
Abstract:
Described herein is a portable storage device that stores a hydrogen fuel source. The storage device includes a bladder that contains the hydrogen fuel source and conforms to the volume of the hydrogen fuel source. A housing provides mechanical protection for the bladder. The storage device also includes a connector that interfaces with a mating connector to permit transfer of the fuel source between the bladder and a device that includes the mating connector. The device may be a portable electronics device such as a laptop computer. Refillable hydrogen fuel source storage devices and systems are also described. Hot swappable fuel storage systems described herein allow a portable hydrogen fuel source storage device to be removed from a fuel processor or electronics device it provides the hydrogen fuel source to, without shutting down the receiving device or without compromising hydrogen fuel source provision.
Abstract:
Described herein is a portable storage device that stores a hydrogen fuel source. The storage device includes a bladder that contains the hydrogen fuel source and conforms to the volume of the hydrogen fuel source. A housing provides mechanical protection for the bladder. The storage device also includes a connector that interfaces with a mating connector to permit transfer of the fuel source between the bladder and a device that includes the mating connector. The device may be a portable electronics device such as a laptop computer. Refillable hydrogen fuel source storage devices and systems are also described. Hot swappable fuel storage systems described herein allow a portable hydrogen fuel source storage device to be removed from a fuel processor or electronics device it provides the hydrogen fuel source to, without shutting down the receiving device or without compromising hydrogen fuel source provision.
Abstract:
Described herein is a portable storage device that stores a hydrogen fuel source. The storage device includes a bladder that contains the hydrogen fuel source and conforms to the volume of the hydrogen fuel source. A housing provides mechanical protection for the bladder. The storage device also includes a connector that interfaces with a mating connector to permit transfer of the fuel source between the bladder and a device that includes the mating connector. The device may be a portable electronics device such as a laptop computer. Refillable hydrogen fuel source storage devices and systems are also described. Hot swappable fuel storage systems described herein allow a portable hydrogen fuel source storage device to be removed from a fuel processor or electronics device it provides the hydrogen fuel source to, without shutting down the receiving device or without compromising hydrogen fuel source provision.
Abstract:
Combustible fuel gas at low or moderate pressure is supplied to an inlet in the top of an upright working cylinder. The working cylinder then is filled with liquid through a bottom liquid inlet to force the gas from the cylinder and direct it into a storage cylinder. A check valve prevents backflow of gas from the storage cylinder as the liquid is drained from the working cylinder and as the working cylinder again is filled with low or moderate pressure gas. The process of filling the working cylinder with liquid to force the gas from it into the storage cylinder and holding the gas in the storage cylinder while the liquid is drained and the working cylinder is refilled with gas is repeated until the gas in the storage cylinder is a desired high pressure, such as 1500 psi or higher. Two working cylinders can be provided so that, as one of them is drained, the other is filled with liquid, such that gas is substantially continuously forced into the storage cylinder until the desired high pressure is achieved.
Abstract:
In various embodiments, lined underground reservoirs and/or insulated pipeline vessels are utilized for storage of compressed fluid in conjunction with energy storage and recovery systems.