Abstract:
A heating unit has a cartridge that constitutes a single component, which can be readily removed and replaced with a new cartridge. The cartridge is a plurality of non-flammable layers bound together in a border. The layers include a stainless steel mesh located above a layer of ceramic wool. With the cartridge, replacement can be accomplished in approximately fifty minutes compared to a downtime of a week or more previously.
Abstract:
Formation of sintered metal fiber porous mats used as burner faces and filters comprises dispersing metal fibers in a viscous aqueous solution of one or more cellulose ethers, vacuum molding the dispersed metal fibers on a foraminous support, eliminating residual aqueous cellulose ether from the vacuum molded metal fiber porous mat, and sintering the mat. Water solutions of methylcellulose and/or hydroxypropyl methylcellulose having a viscosity of at least about 1500 centipoises are often used pursuant to this invention.
Abstract:
A segmented surface-stabilized gas burner features wide modulation of thermal output simply by the independent control of fuel gas flow to each burner segment. The burner also features a porous fiber burner face, preferably having dual porosities, and a metal liner positioned to provide a compact combustion zone adjacent the burner face. The segmented surface-stabilized burner is ideally suited for use with gas turbines not only because of its compactness and broad thermal modulation but also because only the flow of fuel gas to each burner segment requires control while the relative flow of compressed air into the segments of the burner remains unchanged.
Abstract:
A compact endothermic catalytic reaction apparatus for converting hydrocarbon feedstock and methanol to useful gases, such as hydrogen and carbon monoxide, comprising a tubular endothermic catalytic reactor, a radiant combustion chamber and an annular convection section. Thus tubular endothermic catalytic reactor receives radiant energy from a metal fiber burner that is disposed within the radiant combustion chamber. Combustion products from the radiant chamber enter an annular convection section wherein heat is transferred by forced convection to the tubular endothermic catalytic reactor. The combination of radiant and convective heat transfer results in a compact design of high thermal efficiency.
Abstract:
A method for manufacturing a porous laminate includes continuously passing a laminate preform having a metal wire mesh and a metal non-woven fiber web superposed on the wire mesh between rotating pressure rollers having differing electrical potentials. The fibers of the non-woven web are sintered together at mutual points of contact and to the mesh by passing an electrical current cross-sectionally through the laminate preform in a zone of contact with the rollers, thereby forming the porous laminate.
Abstract:
The reflectivity of a porous burner matrix is enhanced in order to enhance burner performance, capacity and capability. More specifically, a porous matrix is coated with a layer of a material, such as gold, having a higher reflectivity than the porous matrix by itself, and gas-flow pores of the porous matrix are preserved in that layer. A burner has a porous matrix and a porous coating on that porous matrix including a porous layer of a material, such as gold, having a higher reflectivity than the porous matrix by itself.
Abstract:
A fiber matrix burner and method of manufacture in which a shaped burner element is formed by accreting a slurry onto a foraminous support. The slurry is comprised of ceramic fibers, a binding agent, a vaporizable filler, and a powdered, normally non-flammable aluminum alloy having a melting point between 660.degree. C. and 1,000.degree. C. After the drying and firing, a porous matrix of the fibers is formed which flamelessly combusts a fuel-air mixture. During combustion, the aluminum alloy inhibits growth of alumina crystals on the fiber surface to prolong burner life and, in addition, protects the burner both from extreme temperature and flashback.
Abstract:
A burner has: a combustion plate part for ejecting air-fuel mixture; and a flame rod which lies opposite to a portion of the combustion plate part which has a picture-frame-like burner frame; a metal-fiber knit which covers an opening enclosed by the burner frame; and a distribution plate which has formed therein distribution holes and which sandwiches the metal-fiber knit between the burner frame and the distribution plate through the distribution holes and the metal-fiber knit. The flame rod has: a rod base part which lies opposite to a portion of opening peripheral part of the burner frame which is positioned on the same surface level as the opening; and a rod main body part which lies opposite to a portion of the metal-fiber knit. The distance between the rod base part and the opening peripheral part is made smaller than the distance between the rod main body part and the metal-fiber knit.
Abstract:
High intensity combustion and low intensity combustion are carried out together, to stabilize flames and to hold down the emission of carbon monoxide. An air-fuel mixture outlet member (back plate) that includes a single or a plurality of outlet(s) (air-fuel mixture outlet(s)) out of which an air-fuel mixture (GA) flows is include, and a metal fiber knitting body (metal knit) that covers the air-fuel mixture outlet member is included. Therefor, the air-fuel mixture, which is made to flow out of the outlet(s), passes through the metal fiber knitting body (metal knit) and is combusted, a flame of low intensity (flame) is generated together with a flame of high intensity (flame) by combustion of the air-fuel mixture, and the flame of low intensity holds the flame of high intensity.
Abstract:
A tubular burner and methods of use in a furnace having reduced NOx emissions are provided. The tubular burner comprises a structural skeleton and a mesh screen disposed about the structural skeleton. The structural skeleton may be coupled to an air/fuel mixture source. The structural skeleton may comprise a hollow interior and a plurality of perforations to allow the air/fuel mixture to pass from the interior of the structural skeleton to the exterior. The burner systems may further comprise a plurality of holes spaced along and between the burners for cross-lighting of multiple burners using a single igniter.