Abstract:
A thermally-integrated lower temperature water-gas shift reactor apparatus for converting carbon monoxide in the presence steam comprises a catalyst bed that is disposed within an outer region surrounding a waste heat recovery steam generator operating at a selected pressure corresponding to the optimum temperature for conducting the catalytic water-gas shift reaction and a process for useful recovery of the exothermic heat of reaction to generate steam that is used in a process for the conversion of hydrocarbon feedstock into useful gases such as hydrogen.
Abstract:
A compact endothermic catalytic reaction apparatus for converting hydrocarbon feedstock and methanol to useful gases, such as hydrogen and carbon monoxide, comprising a tubular endothermic catalytic reactor, a radiant combustion chamber and an annular convection section. Thus tubular endothermic catalytic reactor receives radiant energy from a metal fiber burner that is disposed within the radiant combustion chamber. Combustion products from the radiant chamber enter an annular convection section wherein heat is transferred by forced convection to the tubular endothermic catalytic reactor. The combination of radiant and convective heat transfer results in a compact design of high thermal efficiency.
Abstract:
The formation of coke on metal surfaces exposed to hydrocarbons in a thermal cracking process is reduced by ion implantation of selected antifoulants into such metal surfaces; the antifoulants being chosen from a group of primary elements consisting of aluminum, silicon, and chromium, or combinations thereof, and a group of secondary elements consisting of calcium, lithium, potassium, magnesium, cesium, hafnium, yttrium and zirconium, or combinations thereof.
Abstract:
A fuel processor apparatus comprising a catalytic tubular reactor is heated using an infrared radiant burner to provide the endothermic heat of reaction needed to reform a mixture of hydrocarbon and steam for the production of a hydrogen-rich gas stream. The hydrogen-rich gas stream is further purified using a sequence of catalytic steps that is fed to a fuel cell whereupon a portion of the hydrogen contained in the gas stream is consumed for the production of electricity by electrochemical reaction with oxygen. An unused portion of the purified hydrogen-rich gas stream exits the fuel cell stack and is combusted in the infrared radiant burner. A fuel cell control system rapidly responds to a variable fuel cell electric demand by adjusting the feed of hydrocarbon to the catalytic tubular reactor to maintain the surface temperature of the infrared radiant burner within defined limits.
Abstract:
Resonant tubes of a pulse combustor are immersed in a bed of solid particles in a reaction zone to provide indirect heat from the pulsating combustion gases to the solid particles of the bed. The bed is maintained in an agitated state by a gas or vapor flowing through the bed. Reactant materials are introduced into the agitated bed and undergo reaction at enhanced rates resulting from heat transfer coefficients at least about twice as high as those of steady flow combustors and an intense acoustic pressure level propagated from the pulsating combustor into the reaction zone. The apparatus is useful, for example, to steam reform heavy hydrocarbons and to gasify carbonaceous material, including biomass and black liquor to produce combustible gas at relatively low temperatures, with steam being utilized as the bed fluidizing medium. Black liquor gasification, utilizing sodium carbonate as bed solids, results in liquor energy and chemical content recovery without smelt production.
Abstract:
A compact endothermic catalytic reaction apparatus for converting hydrocarbon feedstock and methanol to useful gases, such as hydrogen and carbon monoxide, comprising a tubular endothermic catalytic reactor, a radiant combustion chamber and an annular convection section. Thus tubular endothermic catalytic reactor receives radiant energy from a metal fiber burner that is disposed within the radiant combustion chamber. Combustion products from the radiant chamber enter an annular convection section wherein heat is transferred by forced convection to the tubular endothermic catalytic reactor. The combination of radiant and convective heat transfer results in a compact design of high thermal efficiency.
Abstract:
Resonant tubes of a pulse combustor are immersed in a bed of solid particles in a reaction zone to provide indirect heat from the pulsating combustion gases to the solid particles of the bed. The bed is maintained in an agitated state by a gas or vapor flowing through the bed. Reactant materials are introduced into the agitated bed and undergo reaction at enhanced rates resulting from heat transfer coefficients at least about twice as high as those of steady flow combustors and an intense acoustic pressure level propagated from the pulsating combustor into the reaction zone. The apparatus is useful, for example, to steam reform heavy hydrocarbons and to gasify carbonaceous material, including biomass and black liquor to produce combustible gas at relatively low temperatures, with steam being utilized as the bed fluidizing medium. Black liquor gasification, utilizing sodium carbonate as bed solids, results in liquor energy and chemical content recovery without smelt production.
Abstract:
A process and an apparatus for high-intensity drying of fiber webs or sheets, such as newsprint, printing and writing papers, packaging paper, and paperboard or linerboard, as they are formed on a paper machine. The invention uses direct contact between the wet fiber web or sheet and various molten heat transfer fluids, such as liquified eutectic metal alloys, to impart heat at high rates over prolonged durations, in order to achieve ambient boiling of moisture contained within the web. The molten fluid contact process causes steam vapor to emanate from the web surface, without dilution by ambient air; and it is differentiated from the evaporative drying techniques of the prior industrial art, which depend on the uses of steam-heated cylinders to supply heat to the paper web surface, and ambient air to carry away moisture, which is evaporated from the web surface. Contact between the wet fiber web and the molten fluid can be accomplished either by submersing the web within a molten bath or by coating the surface of the web with the molten media. Because of the high interfacial surface tension between the molten media and the cellulose fiber comprising the paper web, the molten media does not appreciately stick to the paper after it is dried. Steam generated from the paper web is collected and condensed without dilution by ambient air to allow heat recovery at significantly higher temperature levels than attainable in evaporative dryers.
Abstract:
Resonant tubes of a pulse combustor are immersed in a bed of solid particles in a reaction zone to provide indirect heat from the pulsating combustion gases to the solid particles of the bed. The bed is maintained in an agitated state by a gas or vapor flowing through the bed. Reactant materials are introduced into the agitated bed and undergo reaction at enhanced rates resulting from heat transfer coefficients at least about twice as high as those of steady flow combustors and an intense acoustic pressure level propagated from the pulsating combustor into the reaction zone. The apparatus is useful, for example, to steam reform heavy hydrocarbons and to gasify carbonaceous material, including biomass and black liquor to produce combustible gas at relatively low temperatures, with steam being utilized as the bed fluidizing medium. Black liquor gasification, utilizing sodium carbonate as bed solids, results in liquor energy and chemical content recovery without smelt production.
Abstract:
A device for the spectral dispersion of light suitable for use in a spectrographic mode with arrays of solid state photo-detectors. Light from an entrance aperture passes through a dispersing prism with two curved, refracting surfaces both operating near their aplanatic conjugates. After being reflected by a concave mirror located behind the prism, light returns through the prism in the opposite direction, the refractions at each face again being nearly aplanatic. Spectrally dispersed images of the entrance aperture are formed on a plane well separated from the entrance aperture and nearly normal to the incident light rays. Good image quality is maintained over a broad range of operating wavelengths simultaneously, allowing large spectral intervals to be surveyed without moving any of the elements of the system.