Abstract:
A method for creating a uniformity compensation look-up table is revealed. The method includes the following steps. First measure a plurality of areas on a plane users intend to make uniform to get a measured value of the respective area. Then get a central uniform estimate of a center of the plane. Also get a linear skeleton according to the position of one of the measured values and the position of the central uniform estimate. Next get a plurality of skeletal uniform estimates on the linear skeletons respectively by interpolation or extrapolation of the measured values, the central uniform estimate, and the distance between the position of the measured values and the center of the plane. At last get a plurality of planar uniform estimates on the plane in turn according to the skeletal uniform estimates of the two adjacent linear skeletons to establish the look-up table.
Abstract:
A non-contact method of measuring an insertion loss of a DUT connector is disclosed. The DUT connector has a first ferrule with a first optical fiber and a first end face. The method utilizes a reference connector having a second ferrule with a second optical fiber and a second end face. The method includes: axially aligning the first and second ferrules so that the first and second end faces are confronting and spaced apart to define a gap with an axial gap distance d; measuring values of the insertion loss between the first and second optical fibers for different gap distances d>0; and estimating a value for the insertion loss for a gap distance of d=0 based on the measured values of the insertion loss when d>0.
Abstract:
An ophthalmic endo-illumination system includes a light source that produces a light beam, a fiber port that receives an optical fiber, a condenser that couples at least a portion of the light beam into the optical fiber received at the fiber port, and a beam splitter disposed between the fiber port and the condenser. The beam splitter is configured to receive the light beam from the condenser and split the light beam into a first beam which is coupled to the optical fiber and a second beam which is coupled to a monitoring fiber. An optical sensor is provided to detect an amount of the second beam output from the monitoring fiber. The coupling efficiency of the first beam coupled into the optical fiber may be determined based on the amount of the second beam output from the monitoring fiber.
Abstract:
Method for correction of the temperature dependency of a light quantity L emitted by a light emitting diode (LED), being operated in pulsed mode with substantially constant pulse duration tP, and measured in a light detector, using a predetermined parameter X, correlated to the temperature T of the LED in a predetermined ratio, whereby a correction factor K is determined from the parameter X, preferably using a calibration table, especially preferred using an analytic predetermined function, whereby the measured emitted light quantity L is corrected for the temperature contingent fluctuations of the emitted light quantity, whereby the parameter X is determined from at least two output signals of the LED, which are related to each other in a predetermined manner.
Abstract translation:用于校正由发光二极管(LED)发射的光量L的温度依赖性的方法,其以脉冲模式以基本上恒定的脉冲持续时间t P P运行,并且在光检测器中测量,使用 预定参数X,以预定比例与LED的温度T相关,由此,优选使用校准表,从参数X确定校正因子K,特别优选使用分析预定功能,由此测量的发射光量 根据发射光量的温度偶然波动来校正L,由此根据预定方式彼此相关的LED的至少两个输出信号来确定参数X.
Abstract:
In the method and apparatus for providing an optical fiber interconnect, a transmitter transmits an optical signal through an optical fiber. The transmitter does not transmit to a controller, information about the power of the transmitted optical signal near the input end of the fiber. The controller receives an indication of the power of a returned portion of the transmitted optical signal. The controller causes the lowering of the power of the transmitted optical signal to a predetermined level based the received indication.
Abstract:
A light source (12) emits radiation which is maintained at a desired intensity by use of a photodetector which views the radiation and has a fixed relationship between incident radiation and output photodetector (18) current. Intensity of the radiation is established by varying electric current applied to the source, via a feedback loop (42, 24, 22, 34), to attain a reference value of the photodetector current, the photodetector current being representative of the desired value of radiation intensity. This procedure may be performed first in an air environment with a specific optical assembly of source and photodetector to establish the reference value of photodetector current for a desired value of radiation intensity. Thereupon, the optical system may be operated in a vacuum environment, and a monitoring of the photodetector current establishes the desired value of radiation intensity. Alternatively, the source is operated at a fixed value of excitation current, and an iris (44) or other radiation attenuator is operated to produce the reference value of photodetector current.
Abstract:
Two lamps are lighted alternately at controlled intensities, both lamps illuminate a common sensor and the light path from one lamp includes the density to be measured. When a minimum differential is detected, the ratio of the currents in the lamps is a function of the density being measured and current in either one or both lamp is servo-controlled to minimize the differential. The current or voltage ratios are converted and read out as density values.