Abstract:
A capacitive transducer and a readout circuit for processing a signal from a capacitive transducer. The readout circuit includes a high gain circuit element, two summing amplifiers and two feedback path. The high gain circuit element generates an amplified transducer signal, and the summing amplifiers sum the amplified transducer signal with a positive reference voltage and the negative reference voltage, respectively, to generate a first summation signal and a second summation signal. The feedback paths feed back the summation signals to the transducer. Output circuitry generates an output signal based on the summation signals. The high gain circuit element can be a a switched capacitor integrator. The output circuitry can generates the output signal based on the first and second summation signals.
Abstract:
The present disclosure provides a method and apparatus for a capacitive force sensor utilizing a magnetic spring. The force is applied across a body and a moveable element that are coupled by the magnetic spring. The moveable element is configured to vary the capacitance of a variable capacitor. A sensing circuit, electrically coupled to the variable capacitor, provides a force signal characteristic of the applied force. In application to a stylus pointing device, the moveable element is coupled to a moveable tip of the stylus. The force signal, which is characteristic of the force applied to the tip of the stylus, may be used to control an application executed on a host electronic device.
Abstract:
A multicapacitor sensor system facilitates the measurement of applied shear and moment forces. In one disclosed configuration, moments may be detectable in x, y and z directions, resulting in a full, 3-axis load cell with 6 degrees of freedom. The system may further include electrical circuitry to generate electrical drive pulses, sense amplify and buffer the voltages induced on the sense plates, and compute applied forces. An array of multicapacitor sensors that can be addressed individually without cross-talk and globally produce a map of forces and moments applied to the whole array. A MEMS implementation enables in vivo application.
Abstract:
A capacitive transducer and a readout circuit for processing a signal from a capacitive transducer. The readout circuit includes a high gain circuit element, two summing amplifiers and two feedback path. The high gain circuit element generates an amplified transducer signal, and the summing amplifiers sum the amplified transducer signal with a positive reference voltage and the negative reference voltage, respectively, to generate a first summation signal and a second summation signal. The feedback paths feed back the summation signals to the transducer. Output circuitry generates an output signal based on the summation signals. The high gain circuit element can be a switched capacitor integrator. The output circuitry can generates the output signal based on the first and second summation signals.
Abstract:
A capacitively-coupled strain sensor and methods are presented in which the strain on a structure is measured by the varying capacitance created by the displacement of one or more boards attached to the structure.
Abstract:
An electrode layer is formed on the upper surface of a first substrate, and a processing for partially removing the substrate is carried out in order to allow the substrate to have flexibility. To the lower surface of the first substrate, a second substrate is connected. Then, by cutting the second substrate, a working body and a pedestal are formed. On the other hand, a groove is formed on a third substrate. An electrode layer is formed on the bottom surface of the groove. The third substrate is connected to the first substrate so that both the electrodes face to each other with a predetermined spacing therebetween. Finally, the first, second and third substrates are cut off every respective unit regions to form independent sensors, respectively. When an acceleration is exerted on the working body, the first substrate bends. As a result, the distance between both the electrodes changes. Thus, an acceleration exerted is detected by changes in an electrostatic capacitance between both the electrodes.
Abstract:
[Object] An object of the present invention is to provide a surface pressure distribution sensor capable of maintaining high reliability of lines in a configuration having a folded portion, precisely and stably detecting a surface pressure distribution, and being manufactured with a simple configuration and at low cost. [Solving Means] In the present invention, a first lead line group is placed adjacent to a first line group on a first substrate, a second lead line group connected to a second line group is placed on a second substrate, the second lead line group extends over a boundary portion and connects to the first lead line group on the first substrate, the width of conductors of the first lead line group is smaller than the width of conductors of the first line group and the width of conductors of the second line group, and the width of conductors of the second lead line group positioned in a folded portion of the boundary portion is larger than the width of the conductors of the first lead lined group.
Abstract:
An electrode layer is formed on the upper surface of a first substrate, and a processing for partially removing the substrate is carried out in order to allow the substrate to have flexibility. To the lower surface of the first substrate, a second substrate is connected. Then, by cutting the second substrate, a working body and a pedestal are formed. On the other hand, a groove is formed on a third substrate. An electrode layer is formed on the bottom surface of the groove. The third substrate is connected to the first substrate so that both the electrodes face to each other with a predetermined spacing therebetween. Finally, the first, second and third substrates are cut off every respective unit regions to form independent sensors, respectively. When an acceleration is exerted on the working body, the first substrate bends. As a result, the distance between both the electrodes changes. Thus, an acceleration exerted is detected by changes in an electrostatic capacitance between both the electrodes.
Abstract:
A strain gauge for sensing strain is provided and includes a support substrate, and first and second electrodes supported on the substrate. The first and second electrodes include first and second capacitive plates, respectively. The first capacitive plates are movable relative to the second capacitive plates responsive to strain. The strain gauge further has an input electrically coupled to one of the first and second electrodes for receiving an input signal, and an output electrically coupled to the other of the first and second electrodes for providing an output signal which varies as a function of the capacitive coupling and is indicative of sensed strain.
Abstract:
In a capacitance type sensor of the present invention, a capacitance element is constituted between a displacement electrode and a capacitance element electrode. A return-switch movable electrode is arranged above and spaced from the displacement electrode, to be placed in contact with the displaying electrode due to a displacement of a direction button. When the direction button is operated, the return-switch movable electrode is first displaced into contact with the displacement electrode. Then, the both make a displacement while keeping a contact state. When the displacement electrode is displaced to change the spacing to the capacitance element electrode, changed is the capacitance value of the capacitance element. Based on this change, a force is recognized. Herein, in the course of a transit from a state the displacement electrode and the return-switch electrode are not in contact to a state of their contact, the output signal varies necessarily beyond a threshold voltage.