摘要:
An integrated additive manufacturing cell (IAMC) that combines conventional manufacturing technologies with additive manufacturing processes is disclosed. Individual IAMCs may be configured and optimized for specific part families of complex components, or other industrial applications. The IAMCs incorporate features that reduce hardware cost and time and allow for local alloy tailoring for material properties optimization in complex components.
摘要:
In a method of an embodiment of the invention, a fabrication is received over a network from a first solid freeform fabrication (SFF) system, by a second SFF system. The second SFF system fabricates a physical object based on the fabrication job received, without user intervention in loading the fabrication job into the second SFF system.
摘要:
Machine tools combine material addition via ultrasonic object consolidation and subtractive techniques for imparting high-dimensional accuracy to a finished object. A material supply and feeder, ultrasonic horn, and feedstock cutting device are integrated with a material removal subsystem preferably including a cutting tool and an excess material removal system. Any metal, plastic or composite material suitable for ultrasonic joining may be employed as a feedstock, and these material may assume the form of tapes, sheets, wires, filaments, dots or droplets, with the feeding and material cutting components being designed for the specific feedstock employed. The cutting tool for excess material removal, may be a knife, drill/mill, grinding tool, or other tool capable of accurately cutting the external contour of a cross section of the part being built, and for removing excess feedstock remaining following the application process. The material removal could consist of a vacuum or blower system, chip auger, or other suitable apparatus. A machine disclosed as part of the preferred embodiment is able to deposit material in one step, and optionally and selectively remove it in another. Through the expeditious combination of deposition and removal, the fabrication of objects of arbitrary shape may be realized.
摘要:
A method and process for computer-controlled manufacture of three-dimensional objects involves dispensing a layer of a first material, such as a liquid, insoluble material onto a platform at predetermined locations corresponding to a cross-section of the object, which then hardens. A second medium, preferably water soluble, is then sprayed onto this layer to thereby encapsulate the hardened insoluble media. The uppermost surface of this encapsulant is planned, thus removing a portion of the encapsulant to expose the underlying insoluble material for new pattern deposition. After the resulting planing residue is removed, another layer of liquid, insoluble media is dispensed onto the planned surface. The insoluble media can be of any color and may vary from layer to layer, and from location within a layer to location with a layer. These steps are repeated, until the desired three-dimensional object, surrounded by a mold, is completed. At this point, the object is either heated or immersed in solvent, thereby dissolving the mold and leaving the three-dimensional object intact. Other system methods, and processes are also disclosed.
摘要:
This invention defines a system and method for manufacturing three-dimensional articles from a design created on a CAD item. The article is made using particle deposition of a fluent material to a build-up on a servo assembly base. The fluent material is deposited in the form of droplets from a dispensing head of a head assembly by moving the assembly up and down in a reciprocating motion according to the three-dimensional design coordinator. A droplet of fluent material forms as the dispensing head moves downward and makes contact with the article being formed, as the head reaches its lowest position of travel. The surface tension and capillarity of the fluent material is used to form the mass and shape of the droplet at the top surface of the article as the dispensing is moved upwards. The size and shape of each droplet may also be controlled by the type of fluent material used as well as its temperature and pressure and the size of the dispensing head orifice.
摘要:
An object produces from a computer data base by representing the object in the data base as a solid voxels surrounded by support voxels within a volume. The data base representation of the object as the solid voxels is converted to a data base representation of the object as a shell of solid voxels surrounding filler support voxels, and the object from said converted data base representation is constructed in a layerwise fashion. A first material is dispensed in liquid form at selected locations of a target surface, and the selected locations correspond to the shell locations of a cross-section of an object. The first material solidifies after being dispensed; a second material is applied at locations of said target surface other than the shell locations at which the first material is dispensed, to form another target surface. The dispensing and applying is repeated to form an object comprising a shell of the first material surrounding said second material, and surrounded by the second material. The portion of said second material surrounding said shell is removed, relative to the first material, to leave an object formed of a shell of the first material surrounding a portion of the second material.
摘要:
A method and process for computer-controlled manufacture of three-dimensional objects involves dispensing a layer of liquid, insoluble material onto a platform at predetermined locations, which then hardens. A second media, preferably water soluble, is then sprayed onto this layer to thereby encapsulate the hardened insoluble media. The uppermost surface of this encapsulant is planed, thus removing a portion of the encapsulant to expose the underlying insoluble material for new pattern deposition. After the resulting planing residue is removed, another layer of liquid, insoluble media is dispensed onto the planed surface. The insoluble media can be of any color and may vary from layer to layer, and from location within a layer to location within a layer. These steps are repeated, until the desired three-dimensional object, surrounded by a mold, is completed. At this point, the object is either heated or immersed in a solvent, thereby dissolving the mold and leaving the three-dimensional object intact. Other systems, methods and processes are also disclosed.
摘要:
A system for additive metal manufacturing, including a deposition mechanism, a translation mechanism mounting the deposition mechanism to the working volume, and a stage. A method for additive metal manufacturing including: selectively depositing a material carrier within the working volume; removing an additive from the material carrier; and treating the resultant material.
摘要:
This invention concerns apparatus for generating instructions for machines of a manufacturing chain used to manufacture a workpiece. The apparatus comprising a processor arranged to receive a model based definition (MBD) of a workpiece including geometric dimensions and tolerances; receive inputs setting an additive build design for building the workpiece based upon the geometric dimensions; generate additive instructions for an additive manufacturing machine of the manufacturing chain based upon the additive build design; determine a prospective intermediate workpiece product expected from an additive build in accordance with the additive build design; determine differences between the prospective intermediate workpiece product and the model based definition of the workpiece; and generate further instructions for at least one further machine of the manufacturing chain based upon the differences.
摘要:
Methods and systems for manufacturing a piece or apparel. According to an aspect of the invention, a method for the manufacture of a piece of apparel comprises the steps of: (a) obtaining body data corresponding to at least one dimension of at least a part of the user's body, (b) obtaining pattern data corresponding to at least one pattern of the piece of apparel to be manufactured, (c) generating, based on the body data and the pattern data, manufacturing data adapted to be processed by a manufacturing machine, and (d) transmitting the manufacturing data to a manufacturing machine. When the manufacturing data is received at the manufacturing machine, the manufacturing data is processed and at least part of the piece of apparel is manufactured.