Abstract:
A spring-loaded device is installed into a node housing at a predetermined location. The predetermined location is selected to correspond to another predetermined location into which a stinger may be installed. These predetermined locations on the node housing are selected to further correspond to a predetermined internal location of an RF interface connector. A conducting pin of the RF interface extends through a dielectric between a nail head shaped end, which provides electrical connection with the stinger projection, and an end soldered to a PCB of the amplifier. The amplifier may be installed and the node housing closed before the stinger and spring-loaded device are installed into the housing. This facilitates installation of the stinger into the housing without having to open the housing and remove the amplifier. External threads on the spring-loaded device facilitate installation thereof, but a unique torque is not required therefor.
Abstract:
A progammable power supply for providing a regulated DC output power is disclosed. The power supply provides the output power to any one of a plurality of electronic devices adapted for receiving the output power at an operational voltage or an operational current. The power supply receives a programming signal to maintain the output power at the operational voltage or operational current associated with a particular selected electronic device. Accordingly, by varying the programming signal, the power supply can be programmed to provide output power to any one of several electronic devices having differing input power requirements.
Abstract:
A progammable power supply for providing a regulated DC output power is disclosed. The power supply provides the output power to any one of a plurality of electronic devices adapted for receiving the output power at an operational voltage or an operational current. The power supply receives a programming signal to maintain the output power at the operational voltage or operational current associated with a particular selected electronic device. Accordingly, by varying the programming signal, the power supply can be programmed to provide output power to any one of several electronic devices having differing input power requirements.
Abstract:
A secondary adapter for receiving a DC power signal and providing an ouput power signal as an input to an AC power adapter is disclosed. The AC power adapter may then provide a DC power signal to meet the input power requirements of an electronic appliance. While the AC power adapter is adapted to receive power from an AC power source, the secondary adapter converts a DC power source to provide an input power signal which is sufficient to power the AC power adapter. The secondary adapter enables the AC power adapter to provide power to the electronic appliance from either an AC power source or a DC power source.
Abstract:
A progammable power supply for providing a regulated DC output power is disclosed. The power supply provides the output power to any one of a plurality of electronic devices adapted for receiving the output power at an operational voltage or an operational current. The power supply receives a programming signal to maintain the output power at the operational voltage or operational current associated with a particular selected electronic device. Accordingly, by varying the programming signal, the power supply can be programmed to provide output power to any one of several electronic devices having differing input power requirements.
Abstract:
A connector, and connector insert, configured to inhibit plastic deformation of at least one of the axially projecting fingers of an outer conductor basket associated with a connector. The connector insert comprises: (i) an outwardly facing flange configured to engage a shoulder formed at a base of the axially projecting fingers of the outer conductor basket, (ii) a tubular structure defining an elongate axis and having plurality of engagement sections extending normal to the outwardly facing flange, each engagement section having a surface disposed substantially normally to a radial projecting from the elongate axis; and (iii) a plurality of stiffening sections having a surface disposed substantially parallel to a radial projecting from the elongate axis. The engagement sections function to prevent plastic deformation of the axially projecting fingers, thereby preventing damage to the fingers and/or the transmission of RF signals The stiffening sections function to support the engagement sections while furthermore preventing the insertion of a non-mating second connector into, or against, the outer conductor basket of a first connector.
Abstract:
A power supply docking station for a SINCGARS RT-1523 radio has a housing configured to support and provides DC power to the radio and a power amplifier. The housing has an integrated battery compartment for receiving at least two military standard BB-2590 batteries. Each battery can independently power the radio and the power amplifier, such that the other battery can be swapped out while the radio and power amplifier are in use. In another embodiment, a power supply docking station supports and provides power to a Harris 150-series radio. In another embodiment, a power supply docking station supports and provides power to a Harris 160-series radio.
Abstract:
A common battery for providing power to a first of a plurality of radios. The plurality of radios includes at least a first radio and a second radio. The common battery has a size of the smallest of at least two batteries. The common battery comprises a raised concentric wall edge for enabling the common battery to lock in place when used in place of a larger of the first battery and the second battery, such as within a Vehicular Adaptor Amplifier. The raised concentric wall edge has a height of a difference between a height of the first battery and a height of the second battery. In one variation, the common battery comprises a circular piloting interface that uses an outside radius of a respective bayonet connector on the first and second radios to align the common battery to the respective radio.
Abstract:
A universal DC power adaptor for a PRC-148 radio, a PRC-152 radio, a Handheld ISR Transceiver, and similar devices and a method of using the same, is disclosed. The universal DC power adaptor includes mounting and locking features that are common to both the PRC-148 radio and the PRC-152 radio. The universal DC power adaptor further includes certain mounting and locking features that are unique to the PRC-148 radio and other mounting and locking features that are unique to the PRC-152 radio. The universal DC power adaptor also provides an output voltage suitable for both the PRC-148 and PRC-152 radios. Such features also are compatible with the Handheld ISR Transceiver, making the universal DC power adaptor compatible with the ISR Transceiver as well. Additionally, the universal DC power adaptor includes programmable control electronics.
Abstract:
A spring-loaded device is installed into a node housing at a predetermined location. The predetermined location is selected to correspond to another predetermined location into which a stinger may be installed. These predetermined locations on the node housing are selected to further correspond to a predetermined internal location of an RF interface connector. A conducting pin of the RF interface extends through a dielectric between a nail head shaped end, which provides electrical connection with the stinger projection, and an end soldered to a PCB of the amplifier. The amplifier may be installed and the node housing closed before the stinger and spring-loaded device are installed into the housing. This facilitates installation of the stinger into the housing without having to open the housing and remove the amplifier. External threads on the spring-loaded device facilitate installation thereof, but a unique torque is not required therefor.