Abstract:
A broad band high frequency sweep generator operating in the gigahertz range. A basic oscillator sweeps a band at the lower region of this range and a frequency amplifier is used to select harmonics for the upper frequencies of the band. Unique amplification and control circuitry is employed to obtain consistent power output and high resolution frequency coverage.
Abstract:
YIG oscillator apparatus comprises both an FET-based YIG oscillator circuit and a bipolar transistor-based YIG oscillator circuit inside a single magnetic structure. Both YIG spheres are disposed in the single air gap of the magnetic structure, which is defined by a pole piece which is tapered to an elongated pole surface which is only slightly larger than necessary to cover both YIG spheres. A band reject filter is included inside the housing for rejecting second harmonics of desired oscillation frequencies only.
Abstract:
YIG oscillator apparatus comprises both an FET-based YIG oscillator circuit and a bipolar transistor-based YIG oscillator circuit inside a single magnetic structure. Both YIG spheres are disposed in the single air gap of the magnetic structure, which is defined by a pole piece which is tapered to an elongated pole surface which is only slightly larger than necessary to cover both YIG spheres.
Abstract:
An oscillator providing predictable oscillator modulation sensitivity includes an amplifier and a feedback circuit disposed about the amplifier. The feedback circuit includes a resonator having a first port and a second port and a voltage-controlled phase shifter having an input port, an output port and a control port, the input port of the voltage-controlled phase shifter connected to the output port of the amplifier and the output port of the voltage-controlled phase shifter coupled to a port of the resonator. The oscillator further includes a circuit, responsive to signals from the output of the voltage-controlled phase shifter and the first port of the resonator, to provide a control signal to the control port of the voltage-controlled phase shifter for degenerating low frequency FM noise arising within the amplifier.
Abstract:
A swept synthesizer signal source provides a digital synchronization signal for accurate internal synchronization of events and for external synchronization of data taking and other operations to predetermined frequencies generated by an oscillator during a sweep. The digital synchronization signal includes a predetermined number of digital pulses, regardless of the sweep time. A ramp voltage which controls the oscillator is corrected during a calibration period to sweep between predetermined limits, thereby insuring that the ramp voltage is synchronized to the digital synchronization signal. The slope of the frequency versus time sweep is also corrected to further improve accuracy. A power level correction technique insures precision power leveling regardless of the sweep range. A table of correction/frequency pairs is entered into the instrument, and an interpolation algorithm is employed to determine corrections at frequencies corresponding to each synchronization pulse. The source can be used in a network analyzer system wherein the synchronization pulses are provided to a receiver to trigger data taking. Two or more sources can be interconnected to provide synchronized sweeps.
Abstract:
A tuned oscillator is disclosed which consists of an active element for oscillation, a ferrimagnetic resonant element connected to part of feedback of the active element, and a matching circuit connected to the active element. The matching cirucit is designed to reflect the fundamental wave produced by the ferrimagnetic resonant element and active and pass the second harmonic wave. Consequently, the magnetic circuit has its load reduced in applying a D.C. magnetic field necessary for frequency tuning to the ferrimagnetic resonance element.
Abstract:
A tuned oscillator is disclosed which comprises an active element, a resonator electrically connected to the active element and made of a magnetic material using ferro-magnetic resonance phenomenon, and a magnetic circuit for applying a magnetic field to the resonator. The resonator is made of an YIG (yttrium, iron and garnet) thin film magnetic resonance element formed by a thin film forming technique and utilizes an uniform mode ferro-magnetic resonance in the YIG thin film, and operating under the application of magnetic field of the magnetic circuit.
Abstract:
An electronically tunable solid-state microwave frequency source comprises a transmission-absorption filter incorporated within a magnetic structure. The transmission-absorption filter is employed with a tunable solid-state oscillator and tunable solid-state multiplier to provide a continuously tunable microwave signal source with enhanced spurious signal attenuation over a multiple-octave tuning range. The filter structure comprises a sphere of monocrystalline garnet such as yttrium iron garnet (YIG) and two coupling loops disposed in the field region of an adjustable field DC magnet. The coupling loops are disposed orthogonal to the magnetic field and to each other. In a specific embodiment the first coupling loop is operative to receive at its input the fundamental frequency signal and at its output is grounded, and the second coupling loop is operative to receive a harmonic input signal at its input and to convey a desired output signal at its output. The magnetic sphere of the transmission-absorption filter typically shares the magnetic field of the YIG sphere used to produce the output of the tuned oscillator. The transmission-absorption filter is incorporated into a source including a switch, a fundamental frequency amplifier and a harmonic frequency amplifier.