摘要:
A bandwidth variable communication method is provided that enables effective use of frequency bandwidths in which the bit rate is constant in every optical path. The bandwidth variable communication method includes, when a network management apparatus sets or changes an optical path that passes through plural communication apparatuses, measuring or obtaining an optical signal quality deterioration amount in a route of the optical path; selecting a modulation format in which a spectrum bandwidth is the narrowest from among modulation formats by which transmission is available on conditions of the optical signal quality deterioration amount and a desired bit rate B (bit/s); and exchanging control information between the network management apparatus and a control unit of each communication apparatus on the optical path route. A bandwidth variable communication apparatus receives the control information, and changes a passband based on the received control information.
摘要:
A network component comprising a generalized multiprotocol label switching (GMPLS) control plane controller configured to implement a method comprising transmitting a message to at least one adjacent control plane controller, wherein the message comprises a Type-Length-Value (TLV) indicating Routing and Wavelength Assignment (RWA) information, wherein the TLV comprises a Node Attribute TLV, a Link Set TLV, or both, and wherein the TLV further comprises at least one sub-TLV indicating additional RWA information. A method comprising communicating an open shortest path first (OSPF) link state advertisement (LSA) message comprising a TLV with at least one sub-TLV to a GMPLS control plane controller, wherein the TLV comprises a Node Attribute TLV, a Link Set TLV, or both, and wherein the TLV further comprises at least one sub-TLV indicating RWA information.
摘要:
A method and system for energy-efficient routing of IP packets in which ingress traffic is forward from ingress nodes directly to source dominator nodes without address destination processing such that related address processing elements may be avoided in the ingress nodes. The source dominator nodes perform address destination processing and forward the packets to destination dominator nodes proximate the destination node.
摘要:
An optical access network comprises L wavelength division multiplexed access sub-networks. Each of the wavelength division multiplexed access sub-networks is arranged to use a set of wavelength channels. M optical line termination apparatus, each receive traffic from a respective operator network and output traffic on the wavelength channels. A wavelength routing apparatus comprises M sets of first ports and L second ports. Each set of first ports connects to a respective one of the optical line termination apparatus and each second port connects to an optical link of a respective one of the wavelength division multiplexed access sub-networks. The wavelength routing apparatus is arranged to route the set of wavelength channels between the sets of first ports and the second ports and to route different wavelength channels of the same wavelength to different ones of the second ports.
摘要:
In an optical communication network that includes a plurality of interconnected network nodes, a method includes storing in each network node, and for each communication channel that traverses the node, one or more impairment margins of respective impairments that affect the communication channel. A potential communication channel that traverses a subset of the nodes in the network is identified. A quality of the potential communication channel is evaluated by processing the impairment margins stored in the nodes in the subset.
摘要:
Restrictions, due to wavelength paths which are non-alternative combinations of wavelengths and paths, are solved. An optical-signal-transmission device comprises M optical-output means outputting optical signals having different wavelengths; optical-switch means having M input ports respectively connected to the optical-output means and output ports, and switching connections between the input ports and the output ports; and wavelength-multiplexing means having M acceptance ports respectively connected to the output ports, N forward ports switchably connected to the acceptance ports corresponding to wavelengths of optical signals inputted to the acceptance ports and transmitting multiplexed-optical signals corresponding to the optical signals accepted by the acceptance ports, wherein when Y particular input ports of the input ports are connected to one particular output port of the output ports, the switch means combines Y optical signals inputted to the particular input ports to generate a combined signal, and outputs the combined signal to the particular output port.
摘要:
An optical cross-connect apparatus includes: a plurality of switch units connected to each other via input ports and output ports; a storage unit to store a setting table in which output port information and corresponding input port information are associated together and registered for each optical signal such that the output port information identifies a specific output port, in the output ports, that outputs the optical signal and the input port information identifies a specific input port, in the input ports, that inputs the optical signal; a setting processor to set each switch unit in the plurality of switch units according to the setting table so as to set a wavelength for each optical signal that is input via the input ports or output via the output ports; and an update processor to update the content of the setting table in response to external input.
摘要:
A wavelength path communication node apparatus includes a wavelength path demultiplexer (321) which demultiplexes branched optical signals input to wavelength multiplexing ports into wavelength path signals, and outputs the wavelength path signals from wavelength demultiplexing ports corresponding to the respective wavelengths, a wavelength path multiplexer (322) which outputs wavelength path signals input to wavelength demultiplexing ports from wavelength multiplexing ports corresponding to the wavelengths of the wavelength path signals, a plurality of transponders (331) each of which converts a wavelength path signal input to a wavelength path transmission port into a client transmission signal to transmit the client transmission signal, and converts a received client reception signal into a wavelength path signal of a wavelength to output the wavelength path signal from a wavelength path reception port, a demultiplexing system optical matrix switch (323) which switches and connects the wavelength demultiplexing ports of the wavelength path demultiplexer and the wavelength path transmission ports of the transponders, and a multiplexing system optical matrix switch (324) which switches and connects the wavelength demultiplexing ports of the wavelength path multiplexer and the wavelength path reception ports of the transponders.
摘要:
In an automatically switched optical network, the wavelengths are assigned to optical path based on their intrinsic physical performance and on the current network operating parameters. The wavelength performance information is organized in binning tables, based primarily on the wavelength reach capabilities. A network topology database provides the distance between the nodes of the network, which is used to determine the length of the optical path. Other network operating parameters needed for wavelength selection are also available in this database. Once a bin corresponding to the path length is identified in the binning table, the wavelength for that path is selected based on length only, or based on the length and one or more additional parameters. The optical path performance is estimated for the selected wavelength, and the search continues if the estimated path performance is not satisfactory. Several available wavelengths are searched and of those, the wavelength that is most used along the optical path in consideration or alternatively network-wide is selected and assigned. This method helps minimize wavelength fragmentation. The binning tables may have various granularities, and may be organized by reach, or by reach, wavelength spacing, the load on the respective optical path, the fiber type, etc.
摘要:
The method of placing regenerators along a trail connecting a source network node with a destination network node of an automatically switched optical network first identifies N tentative regeneration sites and n+1 optical paths along the trail. Wavelengths are assigned to each optical path; and the performance of the trail is assessed based on regenerator placement data and wavelength assignment data. The data identifying this regenerator path, namely regenerator placement data, the wavelength assignment data and the performance parameter of the trail are stored in a list, if the performance parameter is over a threshold. Selection of the tentative sites is revised whenever the initial placement fails due to a reach problem, a wavelength-blocking problem or a path quality problem. If the time for revising the initial placement, or the cost of a regenerator path is unacceptable, the regenerator path is abandoned and a further placement is initiated. Next, a further regenerator placement is attempted for the same trail using n+1 regenerators, and the further regenerator path is stored in the list, etc. Still further, regenerator placement is attempted for another trail, and so on, until a specified number of regenerator paths are stored in the list.