摘要:
A reforming process, selective for the dehydrocyclization of paraffins to aromatics, is effected using a catalyst containing a uniformly distributed platinum-group metal component, a surface-layer metal component comprising one or more of the Group IVA metals, indium, Group VIIB (IUPAC 7) metals, iron, zinc, gold and bismuth and a nonacidic large-pore molecular sieve. The use of this bed of catalyst results in greater selectivity of conversion of paraffins to aromatics and in improved catalyst stability.
摘要:
A novel catalyst and the use thereof in a reforming process is disclosed. The dual-function catalyst comprises a refractory inorganic oxide, indium, Group IVA(IUPAC 14) metal, and a platinum-group metal concentrated in the surface layer of each catalyst particle. Utilization of this catalyst in the conversion of hydrocarbons, especially in reforming, results in significantly improved selectivity to the desired gasoline or aromatics product.
摘要:
A process for converting hydrocarbons into aromatic compounds, which entails contacting a composition containing hydrocarbons with a catalyst under temperature and pressure conditions to produce the aromatic compounds, the catalyst containing a matrix of .eta. transition alumina and/or .gamma. transition alumina. The catalyst contains 0.001 to 2 wt % of silicon, 0.1 to 15 wt % of at least one platinum group metal, and 0.005 to 10 wt % of at least one promoter metal. The promoter metals may be tin, germanium, indium, gallium, thallium, antimony, lead, rhenium, manganese, chromium, molybdenium or tungsten. The catalyst may also contain a doping metal.
摘要:
A novel catalyst and the use thereof in a reforming process is disclosed. The dual-function catalyst comprises a refractory inorganic oxide, indium, Group IVA(IUPAC 14) metal, and a platinum-group metal concentrated in the surface layer of each catalyst particle. Utilization of this catalyst in the conversion of hydrocarbons, especially in reforming, results in significantly improved selectivity to the desired gasoline or aromatics product.
摘要:
Reforming selective for the dehydrocyclization of paraffins to aromatics, is effected using a catalyst containing a platinum-group metal, a nonacidic large-pore molecular sieve, and a metal modifier which is positioned on the catalyst to be extrinsic to the pores of the molecular sieve. The use of this catalyst results in greater selectivity converting paraffins to aromatics and improved catalyst stability particularly when processing feedstocks containing small amounts of sulfur compounds.
摘要:
A process and catalyst are provided for dehydrogenating a hydrocarbon feedstock and producing an olefinic product. The process comprises contacting the feedstock at dehydrogenation conditions with a dehydrogenation catalyst comprising from about 0.01 weight percent to about 5.0 weight percent of a platinum group metal, from about 0.02 weight percent to about 10.0 weight percent of zinc, and a support component comprising L zeolite and an alkali metal.
摘要:
A continuous process for upgrading reformate feedstock or the like to reduce benzene content and increase octane fuel rating. The improved process comprises maintaining a fluidized bed of regenerable acid solid medium pore zeolite catalyst particles in a turbulent regime reaction zone, preferably maintained with a superficial gas velocity of 0.1 to 1 meter/sec. with reformate feedstock being introduced at a bottom portion of the reaction zone at a weight hourly space velocity (WHSV) of 0.1 to 5, based on active catalyst solids; reaction zone total pressure being less than 2000 kPa. The preferred catalyst particles have an average particle size of 20 to 100 microns (.mu.), with about 10 to 25% of the catalyst particles comprising fine particles having a particle size less than 30 microns; and the preferred zeolite catalyst comprises shape selective medium pore aluminosilicate zeolite having a constraint index of 1 to 12. The benzene is reacted by contacting reformate feedstock, such as C.sub.6 distillation heart cut containing at least 70 wt % compounds having six carbon atoms, including benzene, n-hexane and isohexane, with said catalyst particles at reaction temperature of 370.degree. to 540.degree. C. and at benzene partial pressure of at least 200 kPa under reformate conversion conditions sufficient to convert at least 40% of feedstock benzene per pass, thereby producing a high octane fuel product containing less than 10 wt % C.sub.10.sup.+ components.
摘要:
By this invention there is provided a catalyst composition comprising a Group IVB oxide, an amorphous silica-alumina support having dispersed thereon a rare earth oxide, which as herein used also includes yttrium oxide, and a metal(s) selected from the group consisting of Group VIII noble metal(s), mixtures of Group VIII noble metal(s) and tin, mixtures of Group VIII noble metal(s) and rhenium, and mixtures of Group VIII noble metal(s), tin and rhenium. The amorphous silica-alumina support contains at least about 50% silica by weight. The catalyst can function as a hydrocarbon conversion catalyst in reactions where platinum on halided (Cl,F)-alumina is typically used.
摘要:
Tin modified platinum-iridium catalysts provide high yields of C.sub.5 + liquid reformate in catalytic reforming, concurrent with high activity. In particular, the tin modified platinum-iridium catalysts are of unusually high selectivity, as contrasted with known iridium promoted platinum catalysts. The high selectivity is manifested in reforming a naphtha feed in a reactor charged to capacity with the catalyst, but particularly when used in the dehydrocyclization zone, or tail reactor of a series of reactors, while the lead reactors of the series contain a non tin-containing platinum catalyst, especially a platinum-iridium, or a platinum-rhenium catalyst. The tin modified platinum-iridium catalysts are also highly active, with only moderate loss in the high activity for which iridium stabilized platinum catalysts are known.
摘要:
A catalyst for reforming gasoline boiling range naphthas which catalysts are comprised of Pt and Sn on alumina and a modifier comprised of about 100 to 500 wppm Si and at least 10 wppm of one or more alkaline earth metals selected from Ca, Mg, Ba, and Sr wherein the total amount of modifier does not exceed about 5000 wppm.