Abstract:
The present invention provides a flat panel display device, which includes a backlight system and a display panel. The backlight system includes a light source, a light homogenization mechanism, and a back frame. The back frame carries the light source and the light homogenization mechanism. The back frame includes at least first and second primary assembling pieces, in which the first primary assembling piece has an end forming at least two joint sections, and each of the joint sections has a structure mating an end of the second primary assembling piece. The first primary assembling piece uses one of the joint sections to join the corresponding end of the second primary assembling piece. The present invention also provides a stereoscopic display device and a plasma display device. The back frame mold of the flat panel display device, the stereoscopic display device, and the plasma display device of the present invention is of a simple structure and can reduce the expenditure of the back frame mold, and can also save the material used for back frame so as to lower down the cost of flat panel display device.
Abstract:
Panel including a transparent front plate and a rear plate that leave between them discharge spaces, the walls of which are at least partly coated with a layer of a phosphor capable of emitting green, blue or red light; the green phosphor is formed from a mixture of two aluminates having a spinel structure, one A doped with manganese and the other B doped with cerium and with terbium; preferably, the blue phosphor is based on an aluminate of the same structure. The static charges of the various phosphors are homogenized and the risks of phosphor performance degradation during manufacture of the panel are limited.
Abstract:
A method for manufacturing plasma display panels (PDP) is disclosed. The method appropriately controls conditions in an evaporating room during the process of forming film on a substrate of the PDP, thereby obtaining quality film. The method includes a deposition step where film is formed on front substrate (3) held by substrate holder (30), which is repeatedly used in the deposition step. Substrate holder (30) attached with the film due to repeated use co-exist in evaporating room (21) with another substrate holder (30), from which the film attached is removed, so that the conditions such as a degree of vacuum changes only a little.
Abstract:
In a gas discharge display element according to the present invention, two pairs of electrodes are arranged in a discharge space of a display cell and one of the electrode pairs which forms a first discharge space between the first electrodes is driven such that discharge having a memory function and capable of being memory-driven is produced during a time in which light emission of the display cell is sustained. The other electrode pair is driven with a voltage pulse having duration smaller than that of the driving voltage pulse for the first electrode pair such that discharge a is obtained in the other space defined between the electrodes of the other electrode pair using the discharge in the first space as a seed discharge. The duration of the drive pulse for the second electrode pair preferably terminates before the discharge current is reduced due to the formation of a wall charge.
Abstract:
A gas discharge panel provides one or more shift channels for discharge spots, said shift channel (s) being composed of 2 or more electrode groups on each of a pair of substrates arranged oppositely across a discharge gap. Electrodes of each group are provided alternately and periodically on each substrate with the electrode patterns on each substrate such as to define said shift channel(s). The electrode layout eliminates the need for crossover areas in the leading out of electrodes and is very useful for realizing high resolution and low cost AC driven self-shift plasma display panels.
Abstract:
An improved driving system and method for shifting a discharge spot from a given discharge cell to an adjacent discharge cell in an A.C. gas discharge, or plasma display, panel, having opposed sets of electrodes respectively covered with corresponding dielectric layers thereby insulated from the discharge gas space. One set of electrodes comprises common electrodes extending in parallel relationship and defining the direction of propagation of the shifted discharge spots. The other set of electrodes, spaced apart from the first set by the gas space, extends in parallel relation transversely to the first common electrodes, and comprise the shift electrodes. The shift electrodes are arranged in groups of a predetermined number in each group and a corresponding number of buses permits selective application of shift pulses to the respectively associated shift electrodes in sequence for each group and simultaneously for the successive groups. An improved operating margin for the shift function is achieved by utilizing the priming discharge effect of a given cell currently discharging, to reduce the necessary firing voltage at an adjacent discharge cell to which the current discharge spot is to be shifted, while minimizing the probability of misfiring at corresponding, remote cells energized in the same phases. An overlap pulse is applied to a discharge cell at which a discharge spot currently is established, to provide a priming discharge for the adjacent cell to which the spot is to be shifted. A shift pulse applied to the adjacent cell terminates after termination of the overlap pulse and thereby produces a lateral field between the two adjacent discharge cells whereby the space charge generated by the priming discharge is attracted to and reduces the necessary firing voltage at the adjacent cell. The duration of the overlap pulse in relation to the amplitude of the shift pulse defines an operating margin for the shift operation which is optimized over a preferred range of the overlap pulse duration.
Abstract:
An AC drive discharge type display apparatus which includes a display panel having groups of transverse electrodes and vertical electrodes which are positioned in cross form with a gap therebetween and having cross points which are made luminescent by applying an AC sustaining drive voltage, a turn-on signal and a turn-off signal. A drive circuit is further provided and has transistors and resistances which are connected at one end to the collector electrode of the transistor and the other end of the resistor being disposed in a matrix; means for commonly connecting said other ends of the resistors in each transverse line of the matrix; a first selective switch circuit for applying the turn-on signal or the turn-off signal by selectively driving the transverse lines which are commonly connected; means for commonly connecting the bases and emitters of the transistors in a vertical line of the matrix; means for connecting each of the bases and emitters which are commonly connected, through a diode to the sustaining drive voltage source; a second selective switch circuit for selectively driving the vertical lines by connecting the same to the bases or emitters which are commonly connected; and wherein the collectors of the transistors of the drive circuit are connected to the electrodes in one or both of the groups of the electrodes in the transverse or vertical direction of the display panel.
Abstract:
Two arrays of main X and Y electrodes are juxtaposed with two arrays of auxiliary electrodes in two parallel plane respectively. Two half illumination or extinction pulses less in magnitude than a discharge voltage across the opposite arrays and opposite in polarity are applied to selected ones of the X and Y electrodes to initiate or terminate an electric discharge or discharges across them. A pulse train including positive pulses alternating negative pulses is applied across the arrays of auxiliary electrodes to be discharged across those auxiliary electrodes juxtaposed with the selected X and Y electrodes upon each inversion of the pulses polarity after the first discharge.
Abstract:
A display system for a plasma display device in which a plurality of electrodes are arranged on each of a pair of opposing base plates with a discharge gas space defined therebetween, the plurality of electrodes on each base plate being arranged to intersect those on the other base plate perpendicularly to them; the electrodes on at least one of the base plate are covered with a dielectric layer to form a display layer; the other plate serves as a shift layer; a discharge produced between adjacent electrodes of the shift layer is shifted; and a discharge is caused between adjacent electrodes of the display layer in accordance with the timing of the shifting of the discharge in the shift layer and that of writing in the display layer.
Abstract:
A plasma display panel and the manufacturing method thereof. Forming partition wall structures on the back substrate of the paste display panel and forming the column-shaped protrusions at the positions corresponding to the cuts on the rib on the front substrate of the plasma display panel. The manufacturing process is simple and the alignment of the front and back substrate is easy. In addition, the size of the opening of the rib and the size of the cut can be easily adjusted according to the needs of the application during the manufacturing process.