Abstract:
A method and apparatus are disclosed wherein a plurality of electric fields and of orthogonal spray configurations of vaporized analyte are so combined as to enhance the efficiency of analyte detection and mass analysis. The invention provides reduced noise and increased signal sensitivity in both API electrospray and APCI operating modes.
Abstract:
A method and apparatus reduces storage requirements for identifying a sequence of elements in a compound. The storage reduction receives a set of monoisotopic masses designed to address entries from two or more mass spectroscopy data sets according to a fitness function, analyzes the fitness function configured to facilitate identification of a sequence of elements in the compound, determines a minimum address range for addressing entries in each of the two or more mass spectroscopy data sets according to sequence of elements and fitness function analysis and reduces the size of at least one of the two or more mass spectroscopy data sets to selected mass data values according to the minimum address range.
Abstract:
A method for selectively transmitting ions using a FAIMS device is disclosed. A first analyzer region is defined by a space between first and second spaced apart electrodes. A second analyser region is provided in operational communication with the first analyzer region. Ions are provided to the first analyzer region. The ions are coupled from the first analyser region to the second analyzer region. An asymmetric waveform is used to generate an electric field within the first analyser region and a compensation voltage is applied to prevent some ions from exiting the analyser region. Conditions are provided within the second analyzer region for effecting a second different separation of ions therein. Finally, the separated ions are trapped to accumulate ions within a trapping region thereof.
Abstract:
A new detection scheme for time-of-flight mass spectrometers is disclosed. This detection scheme allows extending the dynamic range of spectrometers operating with a counting, technique (TDC). The extended dynamic range is achieved by constructing a multiple anode detector wherein the individual anodes detect different fractions of the incoming particles. Different anode fractions are achieved by varying the size, physical location, and electrical/magnetic fields of the various anodes. An anode with a small anode fraction avoids saturation and allows an ion detector to render an accurate count of ions even for abundant species.
Abstract:
A method and apparatus are disclosed wherein a plurality of electric fields and of orthogonal spray configurations of vaporized analyte are so combined as to enhance the efficiency of analyte detection and mass analysis. The invention provides reduced noise and increased signal sensitivity in both API electrospray and APCI operating modes.
Abstract:
Metal ions are attached to a sample gas in an ionization chamber to produce ions of the sample gas. The ions of the sample gas pass through a mass spectrometer formed by an electromagnetic field for separation by mass. The mass separated ions of the sample gas are detected and measured by a detector as an ion current. Further, a metal ion emitter for emitting metal ions is arranged at the upstream side of a region controlled to a reduced pressure atmosphere where the flow of gas becomes viscous, a sample gas inflow part for introducing the sample gas to the downstream side where the metal ions are transported, and the sample gas ionized by attachment of the metal ions passes through the opening of the aperture plate and transported to the mass spectrometer. A second gas inflow part is arranged at the upstream side of the metal ion producing region. A second gas supplied by the second inflow part flows through the metal ion producing region and sample gas ionization region. Due to this configuration, it is possible to suppress contact of the sample gas with the metal ion emitter, prevent contamination of the metal ion emitter, and perform mass spectrometry stably over a long term.
Abstract:
A method and system of detecting mass to charge ratio of ions. The method includes producing charged ions in a vacuum, accelerating the charged ions in an electric field into a free flight tube and detecting the charged ions at a detector associated with the free flight tube. A control system selects a bandwidth for filtering a signal produced by the detector and the signal produced by the detector is then filtered with a variable width digital filter based upon the selected bandwidth. The bandwidth for filtering the signal may be selected from a look-up table within the control system based upon the mass to charge ratio of an ion of interest. Alternatively, a peak bandwidth within the signal produced by the detector may be determined and the signal produced by the detector may then be filtered with the variable width digital filter based upon the determined peak bandwidth.
Abstract:
The invention relates to a tandem mass spectrometer and a method for scanning daughter ion spectra which uses a quadrupole mass spectrometer for selection of parent ions and another one for the measurement of the daughter ions. The invention consists of not using a conventional third quadrupole filter as a collision cell for fragmentation of the parent ions but an ion guide system with helically coiled wires, especially in the form of a double helix, in which the ions can be completely decelerated and can be actively fed to the outlet aperture.
Abstract:
A method and apparatus are disclosed wherein a plurality of electric fields and of orthogonal spray configurations of vaporized analyte are so combined as to enhance the efficiency of analyte detection and mass analysis. The invention provides reduced noise and increased signal sensitivity in both APT electrospray and APCI operating modes.