摘要:
A light show device includes a light source configured to generate a light beam having a substantially constant diameter, a container having a substantially transparent portion, a plurality of mirrors, each mirror connectable or connected to the container rotatably about at least one axis, and a particulate source configured to create inside the container a substantial suspension of particulates, where the device is configured to allow a reflection of the light beam between at least a majority of the mirrors.
摘要:
A speckle reduction laser and a laser display apparatus having the speckle reduction laser are provided. The speckle reduction laser includes a semiconductor unit that comprises an active layer and emits laser light through a first side surface thereof by resonating light generated from the active layer, and a vibration mirror unit disposed adjacent to a second side surface of the semiconductor unit. The laser further includes a mirror, and the resonance of the laser light is generated between the first side surface of the semiconductor unit and the mirror, and a resonance mode of the laser light is changed according to the vibration of the mirror.
摘要:
A CO2 laser has a resonator mirror that oscillates about an axis perpendicular to the resonator axis through an angular range of oscillation sufficient that the resonator is only able to deliver radiation for a fraction of an oscillation period of the mirror. In one example of the laser, the oscillating mirror is an end-mirror of the resonator. In another example, the oscillating mirror is a fold mirror of the resonator.
摘要:
A loop is formed with an optical fiber by providing a gain medium having a gain with respect to an oscillation wavelength. Light retrieved by the optical circulator 13 from the optical fiber loop is enlarged and projected to a mirror 23. A diffraction grating 25 is provided with respect to the light reflected in the mirror. The diffraction grating 25 has a Littrow arrangemnt wherein the light is reflected in a same direction as incident light. A selected wavelength is changed in accordance with an incident angle with respect to the diffraction grating 25. Therefore, when the mirror 23 is rotated so as to change the selected wavelength, the oscillation wavelength can be changed at high speed.
摘要:
A laser based ignition system for stationary natural gas engines, a distributor system for use with high-powered lasers, and a method of determining a successful ignition event in a laser-based ignition system are provided. The laser based ignition (LBI) system for stationary natural gas engines includes a high power pulsed laser providing a pulsed emission output coupled to a plurality of laser plugs. A respective one of the plurality of laser plugs is provided in an engine cylinder. The laser plug focuses the coherent emission from the pulsed laser to a tiny volume or focal spot and a high electric field gradient at the focal spot leads to photoionization of the combustible mixture resulting in ignition.
摘要:
A variable pulsewidth laser system is disclosed which employs an oscillating reflector to control the duration of laser pulses. In one embodiment, the oscillating mirror is swept (e.g., caused to swing back and forth) about an axis distinct from the optical axis, such that resonant conditions suitable for laser beam generation occur only at a particular location in the oscillating sweep path. By varying the scanning waveform, laser pulses of different durations can be generated.
摘要:
For fast variation of the wavelengths of lasers, a rotating chopper mirror is provided in the laser resonator. This mirror alternately transmits the light to a grating or deflects it to at least a second grating or to a second mirror. Instead of a chopper mirror, an oscillating mirror can be used, by means of which the beam can be directed to a grating. The oscillating mirror is moved at constant frequency, but with variable amplitude.
摘要:
An improved Q-switched laser and laser rod in which the threshold of double pulsing is significantly raised. In a Q-switched laser, the laser cavity includes a front mirror which is partially transmissive, a rear mirror element and a lasable rod like element positioned between the two mirrors. The rear mirror is controlled in such a manner that it sequentially presents reflective and nonreflective surfaces to the laser rod. This then prevents lasing action from occurring until such time as the reflective surface is presented to the rod. In order to prevent double pulsing, pulsing which occurs as the rear mirror is moving into its proper alignment, a pulse suppression optical discontinuity is provided within the laser cavity. This may take the form of a bevel portion on one end of the laser rod itself. The bevel portion is aligned such that it is positioned in the direction of opening of the rear mirror to the rod. The bevel is preferably positioned at an angle greater than the critical angle of the material of the laser rod and serves to prevent shallow angle reflections and refractions from being propagated through the rod or from mirror to mirror.