Abstract:
The present invention relates to an integrated structure for a MEMS device and a semiconductor device and a method of fabricating the same, in which an etch stopping element is included on a substrate between the MEMS device and the semiconductor device for protecting the semiconductor device from lateral damage when an oxide releasing process is performed to fabricate the MEMS device. The etch stopping element has various profiles and is selectively formed by an individual fabricating process or is simultaneously formed with the semiconductor device in the same fabricating process. It is a singular structure or a combined stacked multilayered structure, for example, a plurality of rows of pillared etch-resistant material plugs, one or a plurality of wall-shaped etch-resistant material plugs, or a multilayered structure of a stack of which and an etch-resistant material layer.
Abstract:
A method of fabricating a microelectromechanical (MEMS) device includes bonding a transducer wafer to a substrate wafer along a bond interface. An unpatterned transducer layer included within the transducer wafer is patterned. A release etch process is then performed during which a sacrificial layer is exposed to a selected release etchant to remove at a least a portion of the sacrificial layer through the openings in the patterned transducer layer. A release etch stop layer is formed between the sacrificial layer and the bond interface prior to exposing the sacrificial layer to the release etchant. The release etch stop layer prevents the ingress of the selected release etchant into the region of the MEMS device containing the bond interface during the release etch process.
Abstract:
[Subject] To provide a pressure sensor capable of implementing cost reduction and miniaturization.[Solving Means] A pressure sensor 1 includes a silicon substrate 2 provided therein with a reference pressure chamber 8, a diaphragm 10, consisting of part of the silicon substrate 2, formed on a surface layer portion of the silicon substrate 2 to partition a reference pressure chamber 8, and an etching stop layer 9 formed on a lower surface of the diaphragm 10 facing the reference pressure chamber 8. A through-hole 11 communicating with the reference pressure chamber 8 is formed on the diaphragm 10, and a filler 13 is arranged in the through-hole 11.
Abstract:
A method for manufacturing a silicon structure according to the present invention includes, in a so-called dry-etching process wherein gas-switching is employed, the steps of: etching a portion in the silicon region at a highest etching rate under a high-rate etching condition such that the portion does not reach the etch stop layer; subsequently etching under a transition etching condition in which an etching rate is decreased with time from the highest etching rate in the high-rate etching condition; and thereafter, etching the silicon region under a low-rate etching condition of a lowest etching rate in the transition etching condition.
Abstract:
A process of forming a MEMS device with a device cavity underlapping an overlying dielectric layer stack having an etchable sublayer over an etch-resistant lower portion, including: etching through at least the etchable sublayer of the overlying dielectric layer stack in an access hole to expose a lateral face of the etchable sublayer, covering exposed surfaces of the etchable sublayer by protective material, and subsequently performing a cavity etch. A cavity etch mask may cover the exposed surfaces of the etchable sublayer. Alternatively, protective sidewalls may be formed by an etchback process to cover the exposed surfaces of the etchable sublayer. Alternatively, the exposed lateral face of the etchable sublayer may be recessed by an isotropic etch, than isolated by a reflow operation which causes edges of an access hole etch mask to drop and cover the exposed lateral face of the etchable sublayer.
Abstract:
The present invention generally relates to methods for producing MEMS or NEMS devices and the devices themselves. A thin layer of a material having a lower recombination coefficient as compared to the cantilever structure may be deposited over the cantilever structure, the RF electrode and the pull-off electrode. The thin layer permits the etching gas introduced to the cavity to decrease the overall etchant recombination rate within the cavity and thus, increase the etching rate of the sacrificial material within the cavity. The etchant itself may be introduced through an opening in the encapsulating layer that is linearly aligned with the anchor portion of the cantilever structure so that the topmost layer of sacrificial material is etched first. Thereafter, sealing material may seal the cavity and extend into the cavity all the way to the anchor portion to provide additional strength to the anchor portion.
Abstract:
A microelectromechanical systems device having support structures formed of sacrificial material surrounded by a protective material. The microelectromechanical systems device includes a substrate having an electrode formed thereon. Another electrode is separated from the first electrode by a cavity and forms a movable layer, which is supported by support structures formed of a sacrificial material.
Abstract:
A method for producing a device with at least one suspended membrane, including the following steps: Producing a trench through a first sacrificial layer and a second layer deposited on the first sacrificial layer, the trench completely surrounding at least a portion of the first sacrificial layer and at least a portion of the second layer, filling all or a portion of the trench with at least one material capable of resisting at least one etching agent, and etching the portion of the first sacrificial layer with the etching agent through at least one opening made in the second layer, the portion of the second layer forming at least one portion of the suspended membrane.
Abstract:
A method for manufacturing a micromechanical component is described, including the steps of: forming a first etch stop layer on a base substrate, the first etch stop layer being formed in such a way that it has a first pattern of through-cutouts; forming a first electrode-material layer on the first etch stop layer; forming a second etch stop layer on the first electrode-material layer, the second etch stop layer being formed in such a way that it has a second pattern of through-cutouts differing from the first pattern; forming a second electrode-material layer on the second etch stop layer; forming a patterned mask on the second electrode-material layer; and carrying out a first etching step in a first direction and a second etching step in a second direction counter to the first direction in order to etch at least one first electrode unit out of the first electrode-material layer and to etch at least one second electrode unit out of the second electrode-material layer. Also described are micromechanical components.