Abstract:
Optical properties of an object are determined via light provided to the object via a probe tip including a plurality of light source/light receiver pairs. Light is received from a first light source/light receiver pair, and the first light source/light receiver pair is arranged so that a first measurement generates data based on light from the object received from a first average optical depth or first thickness sensitivity. Light is received from a second light source/light receiver pair, and the second light source/light receiver pair is arranged so that a second measurement generates data based on light from the object received from a second average optical depth or a second thickness sensitivity. The second average optical depth is different from the first average optical depth. Optical properties of the object are determined based on the data generated by the first and second measurements.
Abstract:
The present invention allows illumination light of a light source which leaks out to a light receiving element to be reliably shielded and allows components to be assembled to be unitized into a compact body. A light-shielding cylindrical section 31 and a light-shielding plate 32 interposed between a light-receiving side light guide 10 and a light emitting side light guide 11 are formed on a frame body 29 of a push button 2 as a single piece. Illumination light which leaks out from a light emitting element 6 and the light emitting side light guide 11 to a light receiving element 5 is shielded by the light-shielding cylindrical section 31 and the light-shielding plate 32. Support ribs 35 and a hook 41 for positioning a circuit substrate 7 are formed in the frame body 29, whereby the light guides 10, 11, light-shielding cylindrical section 31 and light-shielding plate 32 are unitized on the frame body 29.
Abstract:
A light detection device for detecting an optical path position of invisible light. The detection device includes a main body and a light guide. The light guide includes a distal end functioning as a light incident portion through which the detected light enters and a light radiation portion from which visible light is emitted. A drive mechanism reciprocates the light guide in an X-direction while vibrating the light guide in a perpendicular Y-direction. The distal end of the light guide rod moves within a light detection area in an XY plane. A visible light-emitting unit radiates visible light from the distal end when the detected light enters the distal end. The visible light-emitting unit includes a photo-detector for detecting the detected light and a light-emitting element for generating the visible light when the photo-detector detects the detected light.
Abstract:
A device includes a housing assembly that has a first housing member having an inner periphery defining an opening and a second housing member having an outer periphery. The second housing member is mounted within the opening such that the outer periphery and the inner periphery define a contact slot therebetween. A contact member extends through and away from the contact slot. The contact member is captured in the contact slot by the first and second housing members.
Abstract:
A radiometer that incorporates multiple UV bandwidth sensors, defined in nanometers, and includes connectors for inserting a cable that is used to connect to another sensor, or to a data collection module (DCM) in a multidrop, or daisy-chain arrangement. Each sensor can be positioned at any point on a three-dimensional work piece, and will receive UV energy at the aperture having an optical component. The collected energy is directed to a detector in the sensor. A processor in the body of the sensor then computes the amount of UV radiation based on signals from the detector. This information is transferred to and stored in a data collection module to which the sensor string is connected. Data stored in the DCM can then be transferred to a computer for display purposes. The sensors and DCM can be tethered to the computer for real-time measurement readings when adjusting the UV lamps.
Abstract:
A miniaturized spectrometer/spectrophotometer system and methods are disclosed. A probe tip including one or more light sources and a plurality of light receivers is provided. A first spectrometer system receives light from a first set of the plurality of light receivers. A second spectrometer system receives light from a second set of the plurality of light receivers. A processor, wherein the processor receives data generated by the first spectrometer system and the second spectrometer system, wherein an optical measurement of a sample under test is produced based on the data generated by the first and second spectrometer systems.
Abstract:
A miniaturized spectrometer/spectrophotometer system and methods are disclosed. A probe tip including one or more light sources and a plurality of light receivers is provided. A first spectrometer system receives light from a first set of the plurality of light receivers. A second spectrometer system receives light from a second set of the plurality of light receivers. A processor, wherein the processor receives data generated by the first spectrometer system and the second spectrometer system, wherein an optical measurement of a sample under test is produced based on the data generated by the first and second spectrometer systems. Improved shade matching/prediction results are obtained through the use of volumes/regions, preferably polygons, around shades in a shade system.
Abstract:
A symmetric monitor calibrator for mounting on a cathode ray tube or monitor with a surface. The calibrator has a case that holds electronic and optic components. Suction cups hold the calibrator to the surface, in which the suction cups are attached to the end of supporting elements that surround the case. At least three supporting elements with a common connecting point to form one support structure are connected to the top of the case. The supporting elements extend out creating a greater diameter than the case. The supporting elements and therefore suction cups uniformly surround the center point of the case to prevent rotation caused by the effects of gravity.
Abstract:
A method and apparatus for rapid measurements of far-field radiation profiles having a large dynamic range from an optical source is disclosed. Some embodiments of the apparatus include a collector coupled to a rotating hub so that the rotation of an entrance to the collector defines a plane, a detector coupled to receive light captured at the entrance to the collector, and detector electronics having a programmable gain coupled to receive a signal from the detector, Some embodiments may include a rotatable entrance mirror for reflecting light from the optical source into the plane of the entrance of the collector. In some embodiments, the optical source is fixed relative to the plane of the entrance of the collector. In some embodiments, the optical source is rotatable in the plane defined by the entrance of the collector. In some embodiments, the source can be an optical fiber. In some embodiments, the source can be a material irradiated by a laser. In order to obtain a large dynamic range, far-field data from the optical source is taken at a number of gain settings of the detector electronics and a compiled far-field radiation profile is constructed. Characterizing parameters for the optical source, such as fiber parameters for an optical fiber, can be calculated based on the compiled far-field radiation profile.
Abstract:
The present invention relates to an illuminance sensing head structure including a housing, a light detector, a positioning member, a first color light filtering plate, a second color light filtering plate, and a diffusion plate. The housing has a top face recessed with a square plate receiving slot receiving the two color light filtering plates. The plate receiving slot has a center recessed with a rectangular receiving chamber for receiving the light detector. One side of the plate receiving slot is formed with a member receiving space for receiving the positioning member. The plate receiving slot has an outer edge provided with multiple rod insertion holes. The diffusion plate has an enclosure, and has a bottom formed with multiple insertion rods each close fit with the rod insertion hole.