Abstract:
The present invention relates to a method of identifying in a fluid by measuring the amount of optical rotation the fluid causes in a beam of polarized light. The invention further provides for the use of an optional optically active marker in the fluids in order the impact the amount of rotation the fluid will cause. The invention provides a convenient and reliable means for identifying the fluid before, during and/or after the fluid's use.
Abstract:
The invention provides a lubricating composition containing an oil of lubricating viscosity and a block copolymer. The block copolymer may contain (a) a hydrophobic first block having C1-30 alkyl (meth)acrylic units, wherein at least 50 wt % of the C1-30 alkyl (meth)acrylic units are C12-15 alkyl (meth)acrylic units, and up to 50 wt % of the C1-30 alkyl (meth)acrylic units are C16 20 alkyl (meth)acrylic units, with the proviso that alkyl groups of the C1-30 alkyl (meth)acrylic units have an average total number of carbon atoms of at least 8; and (b) a second block having (meth)acrylic units further having a heteroatom-containing group providing a polar group. The invention further relates to a method of lubricating an internal combustion engine by lubricating the engine with the lubricating composition. The invention further relates to the use of the block copolymer as an emulsifier and/or pour point depressant.
Abstract:
Paging congestion control in a wireless communications system is described. Various described methods and apparatus are well suited for use in a peer to peer wireless communications system, e.g., an ad hoc peer to peer wireless network in which decisions are made in a decentralized manner. Wireless terminals, e.g., mobile nodes, monitor other paging activities going on and make back-off, e.g., yielding, decisions with regard to paging based on the results of the monitoring. During a first time interval paging indicator signals are transmitted on paging indicator resources by devices intending to transmit paging signals. During a second time interval paging signals are transmitted on paging signaling resources. Monitored and processed detected paging indicator signals are used by a wireless terminal in deciding whether or not to transmit a paging indicator signal and/or a paging signal.
Abstract:
A composition which provides surface effects to substrates comprising a polymer containing at least one urea linkage prepared by (i) reacting (1) at least one organic diioscyanate, polyisocyanate, or mixture thereof, and (2) at least one fluorochemical compound of Formula I Rf—O(CF2CF2)r(CH2CH2)q(R1)sXH Formula (I) wherein Rf is a linear or branched C1 to C7 perfluoroalkyl optionally interrupted by one to three oxygen atoms, r is 1 to 3, q is 1 to 3, s is 0 or 1, X is O, S, or NR2 wherein R2 is H, or C1 to C6 alkyl, and R1 is a divalent radical selected from —S(CH2)n—, p is 1 to 50, and R3, R4 and R5 are each independently H or C1 to C6 alkyl; (ii) and then reacting with (3) water, a linking agent, or a mixture thereof.
Abstract:
There is provided a photoactive composition including: (a) a first host material comprising a phenanthroline derivative; (b) a second host material comprising an aromatic amine; and (c) an electroluminescent dopant material. The weight ratio of first host material to second host material is in the range of 99:1 to 50:50.
Abstract:
There is provided an electroactive composition including: a deuterated first host material and an electroluminescent dopant material. The first host is a compound having Formula I: The compound of Formula I is deuterated. In Formula I: Ar1 to Ar4 are the same or different and are aryl; Q is a multivalent aryl group or where T is (CR′)a, SiR2, S, SO2, PR, PO, PO2, BR, or R; R is the same or different at each occurrence and is an alkyl group or an ary group; R′ is the same or different at each occurrence and is selected H, D, or alkyl; a is an integer from 1-6; and m is an integer from 0-6.
Abstract:
A composition which provides surface effects to substrates comprising a polymer containing at least one urea linkage prepared by (i) reacting (1) at least one organic diioscyanate, polyisocyanate, or mixture thereof, and (2) at least one fluorochemical compound of Formula I Rf—O(CF2CF2)r(CH2CH2)q(R1)sXH Formula (I) wherein Rf is a linear or branched C1 to C7 perfluoroalkyl optionally interrupted by one to three oxygen atoms, r is 1 to 3, q is 1 to 3, s is 0 or 1, X is O, S, or NR2 wherein R2 is H, or C1 to C6 alkyl, and R1 is a divalent radical selected from —S(CH2)n—, p is 1 to 50, and R3, R4 and R5 are each independently H or C1 to C6 alkyl; (ii) and then reacting with (3) water, a linking agent, or a mixture thereof.
Abstract:
The present invention relates to a method, an apparatus and a computer program product for sensing and communicating in transmission systems with shared spectrum usage, which may comprise e.g. a cognitive relay system. The communication between a transmitter and a receiver occurs in two transmission phases via the assistance of a relay. Sensing is performed at the transmitter during the second transmission phase, thus overcoming the need for dedicated slots for sensing.
Abstract:
The present invention provides a method for obtaining bearer condition during a handover of UE. The method includes: receiving, by a mobile management entity (MME), information of at least one bearer allowed to be accepted by a target base station (eNB) when the eNB makes an admission control for a UE based on received bearer information of the UE during handover of the UE; updating, by the MME, a UE-AMBR used by the target eNB based on the received at least one bearer. The present invention also provides an MME which enables the target side obtain actual bearer condition during handover of a UE.
Abstract:
A technique for operating a wireless communications system that supports multi-user multiple-input multiple-output (MU-MIMO) communications between a base station and multiple mobile stations involves generating inter-cell interference information at the mobile stations and providing the inter-cell interference information to the base station. The base station uses the inter-cell interference information to calculate channel quality indicators (CQIs) and then makes scheduling decisions in response to the CQIs. Data is transmitted from the base station to the mobile stations according to the scheduling decisions.