Abstract:
The invention relates to a photoresist composition comprising a polymeric binder; a photoactive component; and at least one dissolution inhibitor comprising a paraffinic or cycloparaffinic compound containing at least one functional group having the structure —C(Rf)(Rf′)OR wherein Rf and Rf′ are the same or different fluoroalkyl groups of from one or taken together are (CF2)a wherein a is an integer ranging from 2 to about 10 and R is a hydrogen atom or an acid labile protecting group. Typically, the dissolution inhibitor has an absorption coefficient of less than about 4.0 μm at a wavelength of 157 nm.
Abstract:
A fluorine-containing polymer prepared from at least a spacer group selected from the group consisting of ethylene, alpha-olefins, 1,1′-disubstituted olefins, vinyl alcohols, vinyl ethers, and 1,3-dienes; and a norbornyl radical containing a functional group containing the structure: —C(Rf)(Rf′)Orb wherein Rf and Rf′ are the same or different fluoroalkyl groups of from 1 to about 10 carbon atoms or taken together are (CF2)n wherein n is an integer ranging from 2 to about 10 and Rb is a hydrogen atom or an acid- or base-labile protecting group; r is an integer ranging from 0-4. The fluorine-containing polymer has an absorption coefficient of less than 4.0 mm−1 at a wavelength of 157 nm. These polymers are useful in photoresist compositions for microlithography. They exhibit high transparency at this short wavelength and also possess other key properties, including good plasma etch resistance and adhesive properties.
Abstract:
Fluorinated polymers, photoresists and associated processes for microlithography are described. These polymers and photoresists are comprised of a fluoroalcohol functional group which simultaneously imparts high ultraviolet (UV) transparency and developability in basic media to these materials. The materials of this invention have high UV transparecy, particularly at short wavelengths, e.g., 157 nm, which makes them highly useful for lithography at these short wavelengths.
Abstract:
Disclosed herein is a process for the polymerization of ethylene, norbornenes and styrenes, by contacting in solution a selected nickel compound and a selected compound which is or can coordinated to the nickel with the olefin(s). The polymers produced are useful for films and molding resins.
Abstract:
Disclosed herein are processes for polymerizing ethylene, acyclic olefins, and/or selected cyclic olefins, and optionally selected olefinic esters or carboxylic acids, and other monomers. The polymerizations are catalyzed by selected transition metal compounds, and sometimes other co-catalysts. Since some of the polymerizations exhibit some characteristics of living polymerizations, block copolymers can be readily made. Many of the polymers produced are often novel, particularly in regard to their microstructure, which gives some of them unusual properties. Numerous novel catalysts are disclosed, as well as some novel processes for making them. The polymers made are useful as elastomers, molding resins, in adhesives, etc. Also described herein is the synthesis of linear .alpha.-olefins by the oligomerization of ethylene using as a catalyst system a combination a nickel compound having a selected .alpha.-diimine ligand and a selected Lewis or Bronsted acid, or by contacting selected .alpha.-diimine nickel complexes with ethylene.
Abstract:
Disclosed herein are processes for polymerizing ethylene, acyclic olefins, and/or selected cyclic olefins, and optionally selected olefinic esters or carboxylic acids, and other monomers. The polymerizations are catalyzed by selected transition metal compounds, and sometimes other co-catalysts. Since some of the polymerizations exhibit some characteristics of living polymerizations, block copolymers can be readily made. Many of the polymers produced are often novel, particularly in regard to their microstructure, which gives some of them unusual properties. Numerous novel catalysts are disclosed, as well as some novel processes for making them. The polymers made are useful as elastomers, molding resins, in adhesives, etc. Also described herein is the synthesis of linear .alpha.-olefins by the oligomerization of ethylene using as a catalyst system a combination a nickel compound having a selected .alpha.-diimine ligand and a selected Lewis or Bronsted acid, or by contacting selected .alpha.-diimine nickel complexes with ethylene.
Abstract:
Certain olefins such as ethylene, .alpha.-olefins and cyclopentene can be polymerized by using catalyst system containing a nickel or palladium .alpha.-diimine complex, a metal containing hydrocarbylation compound, and a selected Lewis acid, or a catalyst system containing certain nickel �II! or palladium �II! compounds, an .alpha.-diimine, a metal containing hydrocarbylation compound, and optionally a selected Lewis acid. The process advantageously produces polyolefins useful for molding resins, films, elastomers and other uses.
Abstract:
The metathesis of functionalized and unfunctionalized acyclic olefins using catalyst compositions containing iridium and silver in a molar ration of 3 to 1.
Abstract:
This invention relates to a protected organotin-based catalyst system for polyurethane synthesis that is useful in coatings applications. The catalyst has a formula according to; R1aR2bR3cSn[CH(OX)R4]d, wherein R1, R2, and R3 are the same or different and represent an optionally substituted hydrocarbyl, aromatic, alkoxide, amide, halide or stannyl group, R4 represents an optionally substituted hydrocarbyl or optionally substituted aryl group. a, b, and c are independently 0, 1, 2, or 3; d is 1, 2 or 3; and a+b+c+d=4; and X is an acid-labile or moisture-labile protecting group. When a coating mixture comprising the catalyst is sprayed and/or applied to a substrate as a thin film in air, the catalyst is activated. For solvent-based refinish systems comprising hydroxyl and isocyanate species at high solids levels, the catalyst system therefore provides extended viscosity stability, i.e., pot life.
Abstract translation:本发明涉及用于聚氨酯合成的受保护的有机锡基催化剂体系,其可用于涂料应用。 催化剂具有下式: R1aR2bR3cSn [CH(OX)R4] d,其中R1,R2和R3相同或不同,表示任选取代的烃基,芳族,醇盐,酰胺,卤化物或甲锡烷基,R4表示任选取代的烃基或任选取代的芳基 组。 a,b和c独立地为0,1,2或3; d为1,2或3; 和a + b + c + d = 4; X是酸不稳定或潮湿不稳定的保护基。 当包含催化剂的涂料混合物在空气中作为薄膜喷涂和/或施加到基材上时,催化剂被活化。 对于含有高固体含量的羟基和异氰酸酯物质的基于溶剂的修补体系,催化剂体系因此提供了延长的粘度稳定性,即适用期。
Abstract:
An apparatus and method for vapor phase deposition of a reactive surface area (RSA) material onto a substrate of an electronic device. The vapor phase deposition is conducted at ambient pressures in air, and provides capture of residual vapor to minimize environmental release of RSA and other constituents used in the processing.