Abstract:
An inertia charge intake manifold is associated with an internal combustion engine having a plurality of cylinders. The intake manifold includes a plurality of elongated separate branch pipes each corresponding to a respective one of the cylinders. The intake manifold also includes a common flange for connecting a first end of each branch pipe to the internal combustion engine. The common flange has a first surface attached to the internal combustion engine. Further, the intake manifold includes a surge tank to which a second end of each branch pipe is connected. The common flange, the surge tank and each branch pipe are made of a hard thermoplastic synthetic resin. The common flange is integrally connected to the surge tank.
Abstract:
Inlet manifolds such as intake manifolds, collector tanks, intake pipes, oscillatory intake passages, systems with variable-tract intake manifolds etc., for internal combustion engines operating on the principle of the diesel or Otto engine, where the inlet manifold includes two or more dish-shaped parts that are permanently joined to each other, and the dish-shaped parts are formed sheet parts, castings and/or extruded sections of metal. The permanent joining of the dish-shaped parts may be effected e.g. by adhesive bonding and/or welding.
Abstract:
An inertia charge intake manifold is associated with an internal combustion engine having a plurality of cylinders. The intake manifold includes a plurality of elongated separate branch pipes each corresponding to a respective one of the cylinders. The intake manifold also includes a common flange for connecting a first end of each branch pipe to the internal combustion engine. The common flange has a first surface attached to the internal combustion engine. Further, the intake manifold includes a surge tank to which a second end of each branch pipe is connected. The common flange, the surge tank and each branch pipe are made of a hard thermoplastic synthetic resin. The common flange is integrally connected to the surge tank.
Abstract:
A composite air intake manifold assembly for use with an internal combustion engine includes an upper half shell formed from a polymer, a lower half shell formed from a polymer and joined to the upper half shell to define a housing having an internal cavity, and an inner shell formed from a polymer and disposed within the cavity. The insert in combination with the upper half shell and the lower half shell cooperate to define at least a pair of spaced apart generally cylindrical shaped air intake runners. Each of the runners includes an opened air intake end adapted to receive atmospheric air, and an opened air inlet end adapted to be connected to an associated an air inlet side of a cylinder head of the internal combustion engine. Each of the runners includes a continuous uninterrupted weld joint along substantially an entire peripheral edge thereof to provide a sealed fluid path from the opened air intake end to the opened air inlet end of the runner and prevent air leakage between adjacent runners whereby a generally uniform air supply is maintained to each associated cylinder head of the internal combustion engine.
Abstract:
An intake assembly with an optimal noise level, especially an intake duct for use as the manifold of an internal combustion engine. The noise level is optimized by introducing shunt resonators (16, 18) in collecting manifold of the intake duct, which is produced using a multi-shell technique. The inserted structures (16, 18) can be adhered or welded before the shells are joined, or they can be inserted in a preexisting duct formed of previously joined half shells. The shunt resonators (16, 18) require little space and can also be used for subsequently optimizing the intake ducts in the test phase, if the initial test results are acoustically unsatisfactory.
Abstract:
A composite air intake manifold assembly adapted for use with an internal combustion engine includes an upper half shell formed from a polymer and a lower half shell formed from a polymer and joined to the upper half shell. The upper half shell formed includes an upper perimeter flange having a pair of side flanges and a pair of end flanges, the side flanges having an inner surface and the end flanges having an inner surface. The lower half shell includes a lower perimeter flange having a pair of side flanges and a pair of end flanges, the side flanges having an inner surface and the end flanges having an inner surface. The lower half shell is joined to the upper half shell to define a housing having an internal cavity. The internal cavity includes at least a pair of spaced apart generally cylindrical shaped air intake runners, each of said runners including an opened air intake end, adapted to receive atmospheric air, and an opened air inlet end, adapted to be connected to an associated an air inlet side of a cylinder head of the internal combustion engine. When the upper perimeter flange of the upper half shell is positioned against the lower perimeter flange of said lower half shell, a generally double wall thickness surface is formed between the side flanges and the end flanges of the upper half shell and the side flanges and the end flanges of the lower half shell. The end flanges of the upper half shell and the end flanges of the lower half shell are joined together by a weld, and the side flanges of the upper half shell and the side flanges of the lower half shell are joined together by a weld that extends in a generally straight plane and which is generally transverse to the direction of the air flow through the runners to thereby increase the burst strength of the composite air intake manifold assembly.
Abstract:
A combined air cleaning and flow rate sensing system for the combustion air of an internal combustion engine is disclosed. The system includes a housing providing an inlet and a filter at least partially disposed in the housing. The air cleaner system also includes a conduit adjacent the housing and providing a flange and an outlet. The air cleaner system also includes a compressible seal disposed between the filter and the flange. The air cleaner system also includes a locking mechanism adapted to selectively secure the conduit to the housing such that the seal may be compressed between the conduit and the filter. The air cleaner system also includes an accessory mounted to the conduit. The air entering the inlet exits through the outlet.
Abstract:
An object of a support structure for an intake manifold in accordance with the present invention is to reduce the number of parts and to improve the space efficiency. To achieve the object, the support structure is so configured that a surge tank 3 and a flange 4 are connected to each other by means of a stay member 23, by which the rigidity of the intake manifold 21 is enhanced, and EGR gas is introduced into the surge tank 3 via the stay member 23.
Abstract:
A substantially Y shaped split intake manifold is disclosed and also a method of connecting this manifold having fuel-air outlet conduits to a plurality of internal combustion engine cylinder inlet ports. The method comprises the steps of applying a layer of high temperature resistant rubber sealant that remains flexible upon curing to the two outlet passages or conduits of the split intake manifold for forming gas-tight seals between the two outlet passages of the manifold and the associated two inlet ports of the two cylinders of the internal combustion engine and allowing the sealant to cure in situ to adhesively bond to the two outlet passages of the manifold.
Abstract:
An air cleaner, a throttle, a surge tank and air-intake pipes of an intake manifold are combined in a unit and a fuel delivery pipe and fuel injectors are installed in the unit before the unit of an air-intake device is assembled to an internal combustion engine. Cases of the above members are integrally formed thereby to reduce the size of the device and material used for the device. A dusty-side of the air cleaner is disposed under a filter element to prevent dust and water from getting into the clean-side of the filter element when the element is removed to have serviced or inspected.