摘要:
A plastic component (100) with a substrate (130; 230) comprised of a plastic and at least one first fastening piece (110) that is embodied for a form-fitting engagement with a complementarily formed second fastening piece (210) and has at least one anchoring element (112; 212) for being embedded and fixed in position in the substrate (130; 230); the substrate (130; 230) is comprised of soft foam with a weight per unit volume of 120 kg/m3 to 300 kg/m3 and a Shore A hardness of 5 to 100 and the fastening element (110; 210) is comprised of a thermoplastic plastic.
摘要:
An anchoring method of anchoring an anchoring element in a construction object is provided, where a surface of which object has at least one of pores in a surface, structures in a surface (such as an arrangement of ridges with undercut), a inhomogeneous characteristic with makes the penetration of a surface by a liquid under pressure possible, thereby creating pores filed by the liquid underneath the surface, and of a cavity. The method includes the steps of: providing a first element and a second element, the first element comprising a thermoplastic material; positioning the first element in a vicinity of said surface and/or of said cavity, respectively, and positioning the second element in contact with the first element; and causing a third element to vibrate while loading the first element with a force, thereby applying mechanical vibrations to the first element, and simultaneously loading the first element with a counter-force by the second element.
摘要:
A method for adhering a major substrate to which nano sized concave and convex structures are formed without damaging the concave and convex structures can be used in a production method of a microfluidic device including nano sized fluidic channels. The substrates may be adhered under heat free and adhesive agent free environment by exciting the substrate surface including hard silicone resin with atmospheric plasma or vacuum ultraviolet light, then juxtaposing and pressurizing the surface of the hard silicone resin substrate and glass substrate. The silicone rubber composition is applied on the contact face of the cover substrate and then the silicone rubber composition is cured to form the silicone rubber layer and then the ultraviolet light is exposed under the condition that the surface of the major substrate being formed with concave and convex structures is contacted closely to the silicone rubber layer of the cover substrate.
摘要:
Various embodiments of tracheostomy tube assemblies including a cannula, a cap, and a flange are provided. The cannula includes a distal end and a proximal end, the distal end being adapted to be inserted into a patient's trachea. The annular cap includes an annular body having a first surface adapted to be received into the proximal end of the cannula to retain a portion of the cap in the annular body. The flange member includes a second surface that engages the proximal end of the cannula such that the proximal end of the cannula is retained between the second surface of the flange member and the first surface of the annular cap. The flange member also includes a third surface adapted to engage an inner surface of the annular body of the annular cap to retain the flange member between the annular cap and the proximal end of the cannula.
摘要:
There is provided a technique to strongly integrate a galvanized steel sheet and a resin molded article. A hot-dip galvanized steel sheet is immersed in an aqueous solution for aluminum degreasing to form a specific roughness on the surface. The surface is covered with convex protrusions having a diameter of about 100 nm, and a chromate treatment layer appears in the surface. A resin composition comprising 70 to 97 wt % of polyphenylene sulfide and 3 to 30 wt % of a polyolefin resin is injected onto the surface. The resin composition penetrates into ultra-fine irregularities and is cured in that state, and thereby a composite in which the galvanized steel sheet and the resin molded article are strongly integrated can be obtained. The shear rupture strength of the composite is extremely high.
摘要:
An ultrasonic welding system for securing a first work piece to a second work piece includes a welding assembly and a loading assembly disposed adjacent to the welding assembly. The welding assembly includes an ultrasonic controller, an ultrasonic transducer, and a welding tip. The ultrasonic transducer is configured to impart an ultrasonic vibration to the welding tip in response to an electrical signal received from the ultrasonic controller. The loading assembly is configured to generate a pressure load between the welding tip and the first work piece, and includes a first actuator and a second actuator. The first actuator is configured to apply a substantially constant load to the welding assembly, and the second actuator is configured to apply a dynamically variable load to the welding assembly.
摘要:
An ultrasonic welding system for securing a first work piece to a second work piece includes a welding assembly and a loading assembly disposed adjacent to the welding assembly. The welding assembly includes an ultrasonic controller, an ultrasonic transducer, and a welding tip. The ultrasonic transducer is configured to impart an ultrasonic vibration to the welding tip in response to an electrical signal received from the ultrasonic controller. The loading assembly is configured to generate a pressure load between the welding tip and the first work piece, and includes a first actuator and a second actuator. The first actuator is configured to apply a substantially constant load to the welding assembly, and the second actuator is configured to apply a dynamically variable load to the welding assembly.
摘要:
A method for adhering a major substrate to which nano sized concave and convex structures are formed without damaging the concave and convex structures can be used in a production method of a microfluidic device including nano sized fluidic channels. The substrates may be adhered under heat free and adhesive agent free environment by exciting the substrate surface including hard silicone resin with atmospheric plasma or vacuum ultraviolet light, then juxtaposing and pressurizing the surface of the hard silicone resin substrate and glass substrate. The silicone rubber composition is applied on the contact face of the cover substrate and then the silicone rubber composition is cured to form the silicone rubber layer and then the ultraviolet light is exposed under the condition that the surface of the major substrate being formed with concave and convex structures is contacted closely to the silicone rubber layer of the cover substrate.
摘要:
A heat staking method and apparatus is provided for use in deforming a heat-stake so that it becomes mechanically coupled to an encapsulate. The deformed portion of the heat-stake contacts a retention component that provides additional composition strength and fastening surface to the encapsulate.
摘要:
There is provided a fixing method for fixing components together in which two components in the form of a first component and a second component are positioned such that they are mutually superimposed in predetermined relative positions, and are then fixed together, wherein the first component has at least two portions for engagement that are recessed in a contact surface thereof which is placed against the second component towards a surface thereof which is located on an opposite side from the contact surface, and the second component is formed from thermoplastic resin and has at least two protruding portions that protrude from positions that correspond to the portions for engagement of the first component on a surface of the second component which is located on the opposite side from a contact surface thereof which is placed against the first component, and wherein the fixing method for fixing components together includes: a first step in which the contact surfaces of both the first component and the second component are placed against each other, and the positions of the portions for engagement and the protruding portions are matched together; and a second step in which, by pressing a transmitting component that transmits ultrasonic waves against the protruding portions of the second component, the second component is softened by the ultrasonic waves and forms engaging portions that are protrude into the portions for engagement of the first component and become engaged with these portions for engagement.