Abstract:
Hybrid communication ad broadcast systems for broadband, ultra wideband and ultra Narrowband (UWN) reconfigurable, interoperable communication and broadcasting system architectures. Combinations and hybrids of ultra wideband (UWB), ultra narrowband (UNB) and efficient broadband wireless, baseband, intermediate frequency (IF) and radio frequency (RF) implementations for Bit Rate Agile (BRA) reconfigurable and interoperable systems Processing the data signals, of clock signals, and/or carrier cycles waveforms leads to shaped radio-frequency (RF) cycles, waveforms and wavelets. With Multiple Input Multiple Output (MIMO) diversity and protection system configuration the performance of these systems may is further enhanced.
Abstract:
A device includes a request arbitration unit that (1) receives a number of requests for PN vectors from a number of processing units and (2) provides a control indicative of each request selected for processing. An address generator provides one or more addresses (which may be dependent on a particular PN sequence being requested and the offset of the PN sequence) for each selected request. One or more memory units store all “base” PN sequences (e.g., and X(i) sequence and a Y(i) sequence defined by W-CDMA) that may be used to generate all requestable PN vectors. The memory unit(s) provide one or more segments of one or more base PN sequences, based on the address(es). A buffering unit provides a set of one or more PN vectors derived from the one or more PN segments for each selected request.
Abstract:
A receiving unit that reduces the amount of power consumed for detecting the timing of each of a plurality of paths via which received signals were received. A receiving section receives signals sent from a base station and transmitted via a plurality of paths. A path detecting section detects the timing of each of the plurality of paths via which the received signals received by the receiving section were transmitted. A path detection range setting section sets a range where a path is detected by the path detecting section on the basis of information indicative of path timing detected by the path detecting section.
Abstract:
A baseband measurement system includes a host and a Digital Immediate Frequency (DIF) subsystem. The DIF subsystem includes both hardware and software components, such as, for example, a microprocessor and its associated software, a FPGA, one or more ASICs, and memory. The baseband measurements are processed using the FPGA, ASICs, and the microprocessor and its software. The microprocessor controls the flow of the data in and out of the memory and distributes the processing tasks to both the hardware and software components in a cooperative manner. The microprocessor orchestrates the measurements and processing by operating as a measurement state machine. Selection of the proper component is based on the type of measurement and its processing requirements, as well as the current state of the hardware and software components. The host receives the processed data and performs post-processing operations if needed. The host also displays the processed data.
Abstract:
Improved apparatus for a radio communication network having a multiplicity of mobile transceiver units selectively in communication with a plurality of base transceiver units which communicate with one or two host computers for storage and manipulation of data collected by bar code scanners or other collection means associated with the mobile transceiver units. The radio network is adaptive in that in order to compensate for the wide range of operating conditions a set of variable network parameters are exchanged between transceivers in the network. These parameters define optimized communication on the network under current network conditions. Examples of such parameters include: the length and frequency of the spreading code in direct-sequence spread spectrum communications; the hop frame length, coding, and interleaving in frequency-hopping spread spectrum communications; the method of source encoding used; and the data packet size in a network using data segmentation. The invention is preferably to be applicable as an upgrade of an existing data capture system wherein a large number of hand-held transceiver units operate over an extensive area to gather data in various places, requiring the use of multiple base stations. In a variety of such installations such as warehouse facilities, distribution centers, and retail establishments, it may be advantageous to utilize not only multiple bases capable of communication with a single host, but with multiple hosts as well.
Abstract:
A multiple access, spread-spectrum communication system processes a plurality of information signals received by a Radio Carrier Station (RCS) over telecommunication lines for simultaneous transmission over a radio frequency (RF) channel as a code-division-multiplexed (CDM) signal to a group of Subscriber Units (SUs). The RCS receives a call request signal that corresponds to a telecommunication line information signal, and a user identification signal that identifies a user to receive the call. The RCS includes a plurality of Code Division Multiple Access (CDMA) modems, one of which provides a global pilot code signal. The modems provide message code signals synchronized to the global pilot signal. Each modem combines an information signal with a message code signal to provide a CDM processed signal. The RCS includes a system channel controller is coupled to receive a remote call. An RF transmitter is connected to all of the modems to combine the CDM processed signals with the global pilot code signal to generate a CDM signal. The RF transmitter also modulates a carrier signal with the CDM signal and transmits the modulated carrier signal through an RF communication channel to the SUs. Each SU includes a CDMA modem which is also synchronized to the global pilot signal. The CDMA modem despreads the CDM signal and provides a despread information signal to the user. The system includes a closed loop power control system for maintaining a minimum system transmit power level for the RCS and the SUs, and system capacity management for maintaining a maximum number of active SUs for improved system performance.
Abstract:
A method employed by a subscriber station for controlling transmission power during the establishment of a communication channel utilizes the transmission of a short code from a subscriber unit during initial power ramp-up. The short code is a sequence which has a much shorter period than a conventional access code. The ramp-up starts from a low initial power level, and the power is quickly increased while repeatedly transmitting the short code until the subscriber unit receives an indication that the short code has been detected.
Abstract:
A subscriber unit for use in a multiple access spread-spectrum communication system includes a spread spectrum radio interface, responsive to a rate function signal from a base station, and first and second despreaders. The base station assigns the rate function spread-spectrum message channels and the first despreader recovers and modifies an information signal one of the spread spectrum message channels. The information channel mode is then modified for processing by the second despreader, with the second despreader supporting a different information signal rate. The subscriber unit has a capability of communicating with a dynamically changing a transmission rate of an information signal which includes multiple spread spectrum message channels. The system includes a closed loop power control system for maintaining a minimum system transmit power level for a radio carrier station and the subscriber units, and system capacity management for maintaining a maximum number of active subscriber units for improved system performance.
Abstract:
A transmission/reception device for mobile radio applications has a microprocessor (DSP), at least one task-specific processor (P1, P2, P3) and a processor interface (2). The task-specific processor (P1, P2, P3) can be configured, by transmitting suitable configuration instructions from the microprocessor via the processor interface (2), such that a basic function performed by the task-specific processor (P1, P2, P3) can be controlled by changing configuration parameters.
Abstract:
A base station for controlling transmission power during the establishment of a communication channel utilizes the reception of a short code during initial power ramp-up. The short code is a sequence for detection by the base station which has a much shorter period than a conventional access code. The ramp-up starts from a power level that is lower than the required power level for detection by the base station. The power of the short code is quickly increased until the signal is detected by the base station. Once the base station detects the short code, it transmits an indication that the short code has been detected.