Abstract:
A method of fabricating a liquid crystal display device includes forming a data bus line on a substrate, forming a preliminary interlayer insulating layer having a first thickness on the substrate including the data bus line, forming an interlayer insulating layer by etching the preliminary interlayer insulating layer to a second thickness less than the first thickness, the interlayer insulating layer having a planarized surface, sequentially forming a semiconductor layer, a gate insulating layer, and a gate electrode on the interlayer insulating layer, forming a passivation layer on the substrate, forming a plurality of contact holes exposing portions of the data bus line and the semiconductor layer by etching portions of the passivation layer, and forming a pixel electrode on the passivation layer.
Abstract:
A multi-domain liquid crystal display (LCD) device includes a first substrate having a plurality of pixel regions each divided into at least first and second domains, a plurality of pixel electrodes each within one of the pixel regions of the first substrate, each of the pixel electrodes having a plurality of protrusions arranged along different directions within the at least first and second domains, a second substrate facing the first substrate, and a liquid crystal layer between the first and second substrates.
Abstract:
An analog buffer includes a first switch and a first capacitor for receiving an analog signal, a comparing unit for compensating a voltage change of an output signal applied to a line upon receiving the analog signal through the first switch and the first capacitor, a second switch connected across an input terminal and an output terminal of the comparing unit, a third switch connected across the comparing unit, the first switch and the first capacitor and a fourth switch connected between the output terminal of the comparing unit and the line.
Abstract:
A liquid crystal display device includes liquid crystal cells formed at crossings of data lines and gate lines, driving thin film transistors connected to the liquid crystal cells, respectively, to provide a desired video signal to the liquid crystal cells, and pre-charging thin film transistors connected to the liquid crystal cells, respectively, to pre-charge a specified voltage prior to providing the desired video signal to the liquid crystal cells.
Abstract:
An etchant for forming double-layered signal lines and electrodes of a liquid crystal display device includes hydrogen peroxide (H2O2), a phosphate, F-ions, an organic acid having a carboxyl group (nullCOOH), a copper (Cu) inhibitor, and a hydrogen peroxide (H2O2) stabilizer, wherein each of the double-layered signal lines and electrodes of the liquid crystal display device includes a first layer of one of aluminum (Al), aluminum alloy (Al-alloy), titanium (Ti), titanium alloy (Ti-alloy), tantalum (Ta), and a tantalum alloy (Ta-alloy) and a second layer of copper (Cu).
Abstract translation:用于形成液晶显示装置的双层信号线和电极的蚀刻剂包括过氧化氢(H 2 O 2),磷酸盐,F-离子,具有羧基的有机酸(-COOH),铜(Cu)抑制剂, 和二氧化氢(H 2 O 2)稳定剂,其中液晶显示装置的双层信号线和电极中的每一个包括铝(Al),铝合金(Al合金),钛(Ti) ,钛合金(Ti合金),钽(Ta)和钽合金(Ta合金)和第二铜(Cu)层。
Abstract:
A liquid crystal display device includes a plurality of signal lines on a substrate, a plurality of pad electrodes on the substrate, each one of the plurality of pad electrodes connected to one of the plurality of signal lines, at least one insulating film on the plurality of pad electrodes, the at least one insulating film having a plurality of contact holes to expose portions of the pad electrodes, and a conductive film electrically connected to each of the plurality of pad electrodes through the contact holes.
Abstract:
A syringe for fabricating a liquid crystal display panel is provided. The syringe includes a body, a plurality of nozzles, and a connection portion. The body portion has a dispensing material contained therein. The plurality of nozzles supply the dispensing material received from the body portion to a substrate of the liquid crystal display panel. The connection portion are provided on a bottom surface of the connection portion and couples the nozzles with the body portion.
Abstract:
A backlight unit for a liquid crystal display device includes a bottom cover having a first plane portion and a first side portion combined by a first coupling system, a reflector over the bottom cover and having a second plane portion and a second side portion corresponding to the first plane portion and the first side portion, respectively, at least one cold cathode fluorescent lamp over the second plane portion, an optical sheet over the at least one cold cathode fluorescent lamp, and a guide panel overlapping a rim portion of the optical sheet, wherein the guide panel and the bottom cover are combined using a second coupling system.
Abstract:
A liquid crystal display device includes a liquid crystal display panel, a backlight unit having a fluorescent lamp, a reflection sheet reflecting light emitted from the fluorescent lamp, and a bottom cover supporting the reflection sheet, and a metal chassis supporting and affixing the liquid crystal display panel and the backlight unit.
Abstract:
A transreflection-type liquid crystal display (LCD) device includes a plurality of gate and data lines on a substrate crossing each other defining a plurality of pixel regions, a plurality of storage lines parallel to the gate lines, each storage line positioned between the gate lines, a plurality of thin film transistors disposed at the crossings of the gate and data lines, each thin film transistor having source and drain electrodes and a U-shaped channel region, a negative-type organic insulating layer within the pixel region except for a transmission part, the negative type organic insulating layer having at least one of concave and convex patterns thereon, a reflective electrode on the negative-type organic insulating layer within the pixel region except for the transmission part, and a transparent electrode within the pixel region in electrical contact with the drain electrode.