Abstract:
With extremely-thin-film and thin-film measurement, models are formed based upon a combination of film thickness, optical constants obtained using the dispersion formula, incident angle, etc., and the model and measured spectrums are fit by BLMC for a single layer of a structure with a certain number of iterations, obtaining information regarding the single layer. With thin-film multi-layer-structure measurement, models are formed for multiple layers of a thin-film multi-layer structure likewise, and fit by BLMC or EBLMC, obtaining information regarding the thin-film multi-layer structure. In either measurement, light is cast onto a thin film on a substrate to be measured while changing the wavelength as a parameter in order to obtain the spectrums nullE(nulli) and nullE(nulli) for each wavelength nulli, representing the change in polarization between the incident and reflected light. The measured spectrums are fit, obtaining the best model. The results are confirmed and stored, as necessary.
Abstract:
A light source (1) emits a light beam (6) into a plasma chamber (5) onto a sensor (2), which provides a measurement of the thickness of a film layer depositing on its surface (58) by means of a reflection or re-emission of light through the depositing layer (10) back on a detector (3), which is preferably mounted outside the plasma chamber (5). The arrangement allows an online measurement of the growing thickness of the depositing layer (10) during, e.g., plasma CVD- or plasma etching processes in semiconductor manufacturing. Providing a mirror layer (53) with sensor (2) the reflected light intensity can be compared with the incident light beam (6) intensity leading to a thickness determination by means of known absorption or interference curves.
Abstract:
A processing solution is supplied from processing-solution suppliers onto the surfaces of targets to be processed while a flow rate of the processing solution is being adjusted. The processing solution is fed from a processing-solution supply source at a specific pressure via a processing-solution pressure-up feeder. The pressure of the processing solution fed via the processing-solution pressure-up feeder is adjust to another specific pressure or more at least when the processing-solution suppliers are operating simultaneously. A flow-rate detector detects the flow rate of the processing solution supplied from each processing-solution supplier. A pressure detector detects the pressure of the processing solution fed via the processing-solution pressure-up feeder. The flow-rate adjuster and the pressure adjuster are controlled based on prestored control data and detection signals from the flow-rate detector and the pressure detector so that the same amount of processing solution is supplied to the targets from the processing-solution suppliers.
Abstract:
A resin coating method for applying resin to a predetermined region of a wiring board includes the steps of imaging an external appearance of the resin extruded from a resin application device; and automatically adjusting an amount of the resin extruded from the resin application device based on the external appearance of the resin obtained in the imaging step.
Abstract:
An active steel repassivator for the rehabilitation of chloride contaminated reinforced concrete structures and a method for the application of same is disclosed. The active steel repassivator is comprised of a continuous phase, a distributed phase, and/or an aqueous solution of an amine. The continuous phase, also known as the carrier phase, is selected from organic strong volatile bases, salts of weak volatile acids and a non-ionic surfactant. The distributed phase includes an anion containing vanadium in the null4 or null5 state of oxidation. The aqueous solution of the amine acts as a co-inhibitor in the composition.
Abstract:
The uniformity of a wet coating on a substrate is improved by contacting the coating at a first position with the wetted surfaces of periodic pick-and-place devices, and re-contacting the coating with such wetted surfaces at positions on the substrate that are different from the first position and not periodically related to one another with respect to their distance from the first position. A coating is applied to a substrate by applying an uneven wet coating, contacting the coating at a first position with the wetted surfaces of periodic pick-and-place devices, and re-contacting the coating with such wetted surfaces at positions on the substrate that are different from the first position and not periodically related to one another with respect to their distance from the first position. These methods can provide extremely uniform coatings and extremely thin coatings, at very high rates of speed. The coatings can be applied in lanes with sharply defined edges and independently adjustable coating calipers. The pick-and-place devices facilitate drying and reduce the sensitivity of drying ovens to coating caliper surges. Equipment to carry out these methods is simple to construct, set up and operate, and can easily be adjusted to alter coating thickness and compensate for coating variation.
Abstract:
Two axially parallel rolls are pressed against each other in a device for producing and/or treating a moving material web. Sensor elements are arranged in the force transmission path running from the force-producing elements via the rolls, outside roll bodies of the two rolls. As a result of displacing the sensor elements out of the roll bodies of the rolls, the production of the rolls is less complicated and less expensive. No sensors have to be embedded in the roll bodies, which opens up the possibility of using standard rolls. In addition, the occasional grinding of the rolls can in this way be performed without any regard to the sensor elements. Nevertheless, the pressure prevailing between the rolls can continue to be measured directly, since the sensor elements are arranged in the transmission path of the pressing force.
Abstract:
A method for dispensing a flowable substance, such as a flowable photoresist, on a microelectronic substrate. The method can include dispensing a portion of the flowable substance on the microelectronic substrate, receiving an image of at least some of the flowable substance on the microelectronic substrate, and, (with reference to the image), comparing a characteristic of the image with a pre-selected characteristic, or comparing a time required to dispense the portion of the flowable substance with a pre-selected, or both. The method can further include adjusting a characteristic of the dispense process when the image differs from the pre-selected image by at least a predetermined amount, or when the time differs from the pre-selected time by at least a predetermined amount, or both.
Abstract:
An apparatus for aligning a dispenser includes: a table that can move horizontally in forward/backward and left/right directions for receiving a substrate of at least one liquid crystal display panel; first and second dummy aligning plates on the table with a certain space therebetween; a syringe for supplying a sealant onto the first and second dummy aligning plates to form first and second alignment patterns; a first image camera for detecting an image of the first alignment pattern; a second image camera for detecting an image of the second alignment pattern; and an alignment controller for aligning the image of the first image camera with a first reference position and the image of the second image camera with a second reference position.
Abstract:
An absorbent article that contains a substrate applied with an activated carbon coating is provided. The activated carbon coating is formed from a mixture of a polymeric material and an activation agent. The mixture is activated by heating to a temperature of from about 100null C. to about 250null C. As a result of the present invention, it has been discovered that a substrate can be formed that is absorbent and also capable of performing other functions, such as serving as an odor control agent.