Abstract:
A method and apparatus for beamforming using a polarized antenna in a wireless communication system are disclosed. The apparatus includes a processor configured to process a signal, and a multi-polarized antenna including a plurality of antenna elements, configured to transmit the signal. The plurality of antenna elements include an electric-field dipole antenna and a magnetic-field dipole antenna, and a current is applied to the electric-field dipole antenna and the magnetic-field dipole antenna in the same direction or in opposite directions.
Abstract:
Disclosed are a communication performing method and terminal, and the method is a method by which a terminal with dual connectivity performs communication in a heterogeneous cell environment, in which: a first reporting message reporting that a downlink signal is received from a small cell in an intensity greater than a threshold value is transmitted to a macro cell; an RRC establishment message indicating a connection to a small cell cluster is received from the macro cell; connections are added to a plurality of small cells included in the small cell cluster according to additional time information included in the RRC establishment message; and the connections to the plurality of added small cells are respectively activated according to activation connection time information included in the RRC establishment message, and the small cell cluster is determined on the basis of information on a location relationship among the plurality of small cells.
Abstract:
A method for receiving a signal at a User Equipment (UE) in a multi-tier wireless communication system is disclosed. The method includes receiving antenna turn-on/turn-off interval information about a transmission point. The antenna turn-on/turn-off interval information is used for connection transition of a UE related to the transmission point.
Abstract:
A method is provided for receiving uplink control information (UCI) in a wireless access system supporting a carrier aggregation. An evolved Node-B (eNB) transmits, to a user equipment (UE), two or more physical downlink shared channels (PDSCHs) via two or more downlink component carriers, respectively. The eNB receives, from the UE, the UCI for the two or more downlink component carriers. The UCI includes acknowledgement information and channel quality information (CQI) for each of the two or more downlink carriers. The UCI is performed by using a channel coding with respect to the UCI according to a payload size of the UCI when the UCI is transmitted by using a physical uplink control channel (PUCCH) format 3. The UCI is performed by using a rate matching with respect to the channel coded UCI for the PUCCH format 3.
Abstract:
A user equipment (UE) for cancelling a self-interference (SI) signal is disclosed. The UE includes a rat-race coupler, a plurality of transceiving antennas capable of transmitting and receiving signals, a receive antenna, a transmission (Tx) chain connected to an input port when the rat-race coupler uses one port as the input port, and a reception (Rx) chain connected to the receive antenna and an isolated port when the rat-race coupler uses the one port as the input port.
Abstract:
Disclosed is a method of transmitting a synchronization signal from a moving cell base station in a wireless communication system. The present invention includes mapping a moving cell synchronization signal sequence generated on a basis of a sequence assigned for a moving cell to a frequency region and transmitting the mapped moving cell synchronization signal sequence. Moreover, the moving cell synchronization signal sequence may be mapped to the frequency region different from a prescribed frequency region for transmitting a synchronization signal for a user equipment unsupportive of the moving cell.
Abstract:
An embodiment of the present invention relates to a method in which a terminal receives control information in a wireless communication system, said method comprising: a step of performing blind decoding in at least one portion of a resource region except the time unit indicated by a physical control format indicator channel (PCFICH) on a subframe, said at least one portion of the resource region is determined by whether a synchronizing signal or system information is transmitted or not.
Abstract:
A method for transmitting a signal by a first user equipment (UE) configured to perform device-to-device (D2D) communication in a wireless communication system includes transmitting a signal on a subframe for D2D communication to a second UE configured to perform D2D communication, wherein at least one OFDM symbol from among OFDM symbols contained in the subframe includes a repetition signal.
Abstract:
The present invention relates to a method for a terminal to perform a handover in a cloud radio access network (C-RAN), including the steps of: receiving information on at least one candidate remote radio head (RRH); measuring the strength of received signals from at least one candidate RRH and a serving cell for the terminal; and, when the strength of the received signals from the candidate RRH and the serving cell of the terminal satisfy a predetermined relationship according to the measured result, transmitting feedback information, including the measured result, to the candidate RRH.
Abstract:
A method and a macro cell eNB are disclosed. The method includes receiving a measurement report message of the small cell from the UE connected to the macro cell, determining to configure dual connectivity with the macro cell and the small cell to the UE based on a measured value contained in the measurement report message, transmitting a dual connectivity request message for requesting connection with the UE to the small cell, receiving a dual connectivity response message indicating that the small cell is connected to the UE to determine to allocate a resource to the UE, from the small cell, and transmitting an RRC configuration message for requesting addition of connection with the small cell, to the UE.