Abstract:
Vehicle brake device comprises a master cylinder including a master chamber connected to a wheel cylinder, a drive pressure chamber in which a drive pressure is generated for driving a master piston and a fluid pressure chamber in which a fluid pressure is generated in response to a stroke position of the master piston and an operating characteristics setting device for setting operating characteristics of an electromagnetic valve. The operating characteristics include a relationship of the pressure differential in the fluid conduit between the master cylinder side and the wheel cylinder side with respect to the electromagnetic valve based on the supply amount of the electric power detected by the supplied electric power detecting device.
Abstract:
The rotating machine includes a rotating shaft, a case surrounding the rotating shaft, the case being provided with a fluid storing chamber and formed with a housing section. The rotating machine further includes a bearing disposed in the housing section and supporting the rotating shaft, and a ring-like seal member disposed between the fluid storing chamber and the bearing for suppressing the fluid from flowing through a clearance between the rotating shaft and the case. The case is formed with a drain hole for making communication between atmosphere and a space surrounded by the seal member and the bearing within the case and discharging the fluid leaking from the fluid storing chamber and passing the seal member to enter the space, and an atmosphere introducing hole for introducing outside air into the space to keep the space at atmospheric pressure.
Abstract:
A vacuum brake booster includes a movable wall forming a vacuum chamber and a variable pressure chamber in a housing and a valve body connected to the movable wall. A valve mechanism having a vacuum valve for establishing or interrupting the communication between both chambers corresponding to the movement of a plunger and having an air valve for establishing or interrupting the communication between the variable pressure chamber and atmosphere are disposed in an axial hole of the valve body. Atmosphere after the air valve passed flows into the variable pressure chamber through an axial passage and a radial passage formed in the valve body. The axial passage is constituted by a cylindrical inner passage formed at the outer circumference of the plunger by an arc-like flow regulating wall and an arc-like inner circumferential wall portion and an outer passage formed at the outer circumference of the inner passage.
Abstract:
A gear pump having an inner rotor and an outer rotor is covered by a cylindrical outer casing and side casings. The cylindrical outer casing has two outer circumferential edges which are welded over the entire circumference thereof to the outer edges of the side casings, respectively. The outer casing has two angularly spaced recesses in its inner periphery for receiving slide seals therein. Welding is started at a welding start point which is 90 degrees spaced from the middle point between two recesses. During welding, welding energies are applied to the welding start point and the middle point between two recesses. Those energies tend to deform the casing into oval shapes that are 90 degrees out of phase from each other. Thus, these energies cancel each other, thereby preventing the casing from being deformed.
Abstract:
A brake squeal control device is proposed in which specific control for reducing brake squeals can be carried out to meet the will of a driver, and squeal control conditions for starting squeal reduction can be set individually to meet the requirements of drivers. Signals from wheel speed sensors, which indicate travel state, a hydraulic pressure sensor in a hydraulic circuit, which indicates the braking state, interior and exterior temperature sensors, which indicate the temperature state, and a manual switch operated by the will of a driver are sent to a control circuit. Conditions when squeals which the driver wishes to reduce or eliminate are produced, are stored in the control circuit, and when certain data are prepared, thereafter, by detecting the conditions at the time of generation, automatic squeal control is carried out.
Abstract:
A brake squeal control device is proposed which carries out squeal control by specifying travel state and temperature conditions in which brake noise tends to be produced. The brake squeal control device is adapted to feed detection signals from a sensor group that indicates the travel state of the vehicle from a stepping force sensor or wheel speed sensors, and a sensor group that indicates the temperature state from an engine cooling water temperature sensor, a car compartment temperature sensor, a caliper temperature sensor or an outer air temperature sensor to a control circuit. If conditions corresponding to an nullin-the-coldnull and nullfirst-in-the-morningnull states are detected by computing in the control circuit, a solenoid valve is turned on and off to suppress brake squeals.
Abstract:
This automatic clutch control device selects a normal mode when a road friction coefficient is not less than 0.3 at a disconnecting operation starting point (time t1), selects a little low-speed mode when it is not less than 0.1 but less than 0.3 and selects a low-speed mode when it is less than 0.1. Further, when a vehicle stabilizing control such as a traction control or the like is not executed at the time t1, this device selects the normal mode, while when a vehicle stabilizing control is executed at the time t1, it selects the low-speed mode. Moreover, this device selects a high-speed mode when the vehicle is in a sports running mode at the time t1, while selects the normal mode when the vehicle is not in the sports running mode. A connecting operation of a clutch is performed with a speed corresponding to the selected mode in an automatic clutch connecting/disconnecting control by a clutch connecting/disconnecting actuator upon executing a gear-shift control.
Abstract:
A hydraulic brake apparatus includes a tandem brake master cylinder having a rod piston moving in response to a brake pedal, and a floating piston moving in response to the rod piston; a separation valve provided in a hydraulic brake circuit connecting the brake master cylinder and brake wheel cylinders in order to establish and shut off communication between the brake master cylinder and the brake wheel cylinders; a pressure control valve unit for controlling fluid pressure to be supplied from an external fluid-pressure supply source to the brake wheel cylinders while the separation valve is in a shutoff condition; and a stroke simulator mechanism for allowing an idle stroke of the rod piston and an idle stroke of the floating piston while the separation valve is in the shutoff condition. The idle stroke of the floating piston starts during the idle stroke of the rod piston.
Abstract:
A disk brake assembly including a disk rotor, a pair of friction pads adapted to be pressed against the disk rotor from either side in the axial direction of the disk rotor, and at least one return spring coupled to the friction pads in order to bias the friction pads in directions away from the braking surface of the disk rotor. The return spring includes a straddle portion, a pair of extensions, and a pair of engaging portions. Each of the extensions extends from the straddle portion to an engaging position that is proximate to a radial centerline of the friction pads. Each of the engaging portions is disposed at one end of each extension and engages one of the friction pads at engaging positions located on either end of the length of the friction pad.
Abstract:
A hydraulic circuit includes an accumulator having an inflow passage which introduces a hydraulic fluid which is discharged from a hydraulic pump into a hydraulic fluid chamber and a discharge passage which discharges the hydraulic fluid from the hydraulic fluid chamber to a hydraulic actuator. The hydraulic circuit includes a valve mechanism which restricts the supply of hydraulic fluid from the hydraulic fluid chamber to the hydraulic actuator when the pressure in the hydraulic fluid chamber is less than a set pressure and which releases the restriction of the supply of hydraulic fluid to the hydraulic actuator when the pressure in the hydraulic fluid chamber is at least the set pressure. The valve mechanism may be installed inside the accumulator.