Abstract:
An apparatus for providing multiple screens and a method of dynamically configuring multiple screens. The apparatus for providing multiple screens is capable of connecting a plurality of screens to a plurality of output ports so as to dynamically configure the plurality of screens which provide multiple contents on a single physical display device. The apparatus for providing multiple screens includes a service processing module which generates a plurality of screens for displaying received service and an output module which searches an output port connected to the screen.
Abstract:
Disclosed are embodiments of a p-type, silicon germanium (SiGe), high-k dielectric-metal gate, metal oxide semiconductor field effect transistor (PFET) having an optimal threshold voltage (Vt), a complementary metal oxide semiconductor (CMOS) device that includes the PFET and methods of forming both the PFET alone and the CMOS device. The embodiments incorporate negatively charged ions (e.g., fluorine (F), chlorine (Cl), bromine (Br), iodine (I), etc.) into the high-k gate dielectric material of the PFET only so as to selectively adjust the negative Vt of the PFET (i.e., so as to reduce the negative Vt of the PFET).
Abstract:
A composite sealant of the present invention increases a fracture toughness of glass which has an excellent gas tightness but has a low fracture resistance, to enhance the thermal cycle stability while maintaining the gas tightness of a stack. For this, alpha-alumina fiber particles, alpha-alumina granular particles, and metallic particles are mixed and added to a glass matrix for remarkably increasing the fracture toughness from 0.5 MPa·m05 to 6 MPa·m°'5 through the multiple effects of crack deflection and crack bridging by the fiber and granular particles, and effects of crack arresting and plastic deformation by the metallic particles. When using the high fracture toughness composite sealant of the present invention, since the gas tightness and the stability of the stack can be maintained even when there is a thermal stress produced by a non-uniform temperature distribution or a thermal cycle condition in the stack, increasing the fracture toughness of the composite sealant works as the most important factor for enhancing the reliability of a large-area stack.
Abstract:
A chair with an automatically movable back, having a support, and a seat and a back installed on the support. The chair comprises a base frame coupled to a lower surface of the seat in such a way as to define a space between the base frame and the seat; a horizontal movement frame coupled to an upper surface of the base frame to be moved forwards and rearwards, connected at left and right ends thereof to a back frame which in turn is connected with the back of the chair, and having on a lower surface thereof a follower which receives force required for forward and rearward movement; a vertical movement frame which has an upper surface which is connected to the lower surface of the base frame and a lower surface which is connected to the support, and which is coupled to the support such that the vertical movement frame can slide upwards and downwards with respect to the support; and rotation force generation means installed in the vertical movement frame to transmit rotation force generated by upward and downward movement of the vertical movement frame to the follower such that the horizontal movement frame can be moved forwards and rearwards.
Abstract:
In one embodiment, a semiconductor device includes a semiconductor substrate and a bonding pad disposed thereon. The semiconductor device also includes a passivation layer, a buffer layer, and an insulating layer sequentially stacked on the semiconductor substrate. According to one aspect, a first recess is defined within the passivation layer, the buffer layer, and the insulating layer to expose at least a region of the bonding pad and a second recess is defined within the insulating layer to expose at least a region of the buffer layer and spaced apart from the first recess such that a portion of the insulating layer is interposed therebetween. Further, the semiconductor device includes a conductive solder bump disposed within the first and second recesses. The conductive solder bump may be connected to the bonding pad in the first recess and supported by the buffer layer through a protrusion of the conductive solder bump extending into the second recess.
Abstract:
Described is a thermal decomposition treatment system and method of using the thermal decomposition treatment system wherein flammable waste is inputted into a trash burner which is shielded from air or gas and the waste is thermally decomposed and carbonized. The thermal decomposition treatment chamber includes a plurality of heating tubes wherein the flammable waste is inputted into the chambers while hot air is passed through the heating tubes which indirectly heats the flammable waste in an anaerobic environment the resulting gases are purified, recovered and reused.
Abstract:
A semiconductor package and a method of fabricating the same are provided. The semiconductor package includes a semiconductor chip and a circuit board. The semiconductor chip has a bond pad. The circuit board has a base substrate with a throughole, and a conductive film pattern placed on a sidewall of the throughole. The throughole is aligned with the bond pad to expose the bond pad. A connector located within the throughole electrically connects the conductive film pattern to the bond pad. A sealing layer covers the connector.
Abstract:
A method of manufacturing a vertical GaN-based LED comprises preparing an n-type GaN substrate; sequentially forming an active layer and a p-type nitride semiconductor layer on the n-type GaN substrate through an epitaxial growth method; forming a p-electrode on the p-type nitride semiconductor layer; wet-etching the lower surface of the n-type GaN substrate so as to reduce the thickness of the n-type GaN substrate; forming a flat n-type bonding pad on the wet-etched lower surface of the n-type GaN substrate, the n-type bonding pad defining an n-electrode formation region; and forming an n-electrode on the n-type bonding pad.
Abstract:
The present invention relates to a system for treating flammable wastes and a method for treating the same, and more particularly, to a thermal decomposition treatment system of the flammable waste and a waste treatment method of the waste using the same through which the flammable waste inputted into a trash burner is shielded from air or gas and the waste is thermally decomposed and carbonated through a indirect heating by a heating tube for combustible gas to be extracted and recovered for a reuse without emitting contaminated gas, etc. The thermal decomposition treatment system according to the present invention includes a trash burner including a thermal decomposition chamber, a combustion chamber, and a cooling water chamber; a water vapor generator which is communicated to the thermal decomposition chamber through the water vapor supply tube and into which over heated water vapor is forced to be inputted; a cooling unit which is communicated to the cooling water chamber through a cooling water input tube and a cooling water discharging tube, and the cooling water is provided and circulated through this configuration; a purifier which is communicated to the thermal decomposition chamber through the gas discharging tube, and poisonous gases contained in rare gases and combustible gas are removed through this configuration; a combustible gas storage reservoir which is communicated to the purifier through a gas transfer tube and stores the purified combustible gas, and allows some of it to be inputted into the combustion chamber through a gas circulation tube; and a cooling tower which is communicated to a waste heat recovery tube connected to the heating tube and which collects high temperature air passed therethrough, and allows the high temperature air to be cooled and discharged to atmosphere.
Abstract:
A semiconductor device includes first and second transistor devices. The first device includes a first substrate region, a first gate electrode, and a first gate dielectric. The first gate dielectric is located between the first substrate region and the first gate electrode. The second device includes a second substrate region, a second gate electrode, and a second gate dielectric. The second gate dielectric is located between the second substrate region and the second gate electrode. The first gate dielectric includes a first high-k layer having a dielectric constant of 8 or more. Likewise, the second gate dielectric includes a second high-k layer having a dielectric constant of 8 or more. The second high-k layer has a different material composition than the first high-k layer.