Abstract:
A method and apparatus of a UE are disclosed. In one embodiment, the method includes the UE receiving a superposed signal from a BS. The method also includes the UE receiving a signaling from the BS and getting information from the signaling about a first standard modulation scheme for demodulation and a specific indication of how to retrieve at least one transport block from the demodulation output. In addition, the method includes the UE demodulating the superposed signal received from the BS according to the first standard modulation scheme, retrieving at least one transport block from the demodulation output according to the specific indication, and ignoring other portion(s) of the demodulation output.
Abstract:
A computer system and its booting and setting method are disclosed. Power supplying and a booting process of the computer system are controlled by a basic input/output system (BIOS). The computer system includes a super input/output chip, a south bridge chipset, and a power supply module. The super input/output chip includes a timer. A counting time is set by the BIOS and the timer counts down when booting the computer system, wherein the counting time is longer than a normal booting time. The south bridge chipset is electrically connected with the super input/output chip and exchanges data between a south bridge chipset and a peripheral device. The power supply module is used for providing power to the computer system. The BIOS controls the timer to stop counting down when the computer system is capable of booting normally.
Abstract:
An electromagnetic bandgap structure and an electronic device having the same are provided. The electromagnetic bandgap structure includes a first conductive element, a second conductive element and a planar inductive element. The planar inductive element is disposed between the first conductive element and the second conductive element. Furthermore, the planar inductive element is electrically connected to the first conductive element via a first conductive pillar, and it is electrically connected to the second conductive element via a second conductive pillar.
Abstract:
A connector and an electronic system using the same. The electronic system (100) comprises a first electronic device (102), a second electronic device (200), and a connector (104), the connector being used for connecting the first electronic device and the second electronic device. The first electronic device has a first plane (P10). The second electronic device has a second plane (P20). The first plane and the second plane are not coplanar. The connector comprises multiple terminals (110, 120, 130), electrically connected to the first plane and the second plane respectively. In the connector, a signal terminal is located between a first ground terminal and a second ground terminal, which is beneficial to transmission of a low-noise high-frequency signal in a shielded environment. The connector and the electronic system using the same may transmit a signal between different planes by connecting junctions in different planes.
Abstract:
A cooling fin, applied in a heat dissipation module, includes a fin body, a penetration portion, and at least one bending portion. The penetration portion is formed on the fin body and includes a slot, a first bending wall, and a second bending wall. The first bending wall and the second bending wall are formed at the opposite sides of the slot. The bending portion is formed on the fin body and adjacent to one end of the slot.
Abstract:
A bracket for an electronic device is provided. The bracket includes a shaft, a second limiting component, and a first elastic component. A first limiting component is disposed at one end of the shaft. The second limiting component is disposed corresponding to the first limiting component. The first elastic component is connected with the second limiting component to make the first limiting component and the second limiting component form a holding state. When the shaft is rotated to reach a predetermined angle range, the first limiting component pushes against the second limiting component and forms a releasing state to detach a body from a base of the electronic device.
Abstract:
A robot device includes a base station and a robot. The base station transmits guiding signals. The robot receives the guiding signal by three receivers. A receiver is disposed at the robot, and the other two receivers are disposed at the right and left of the receiver at different angles. The robot bypasses toward right or left according to the guiding signal received by the receivers. When the strength of the guiding signal received by the central receiver decreases, the robot stops bypassing to spin and searches the guiding signal again till the strength of the guiding signal received by the central receiver is a maximum value. The robot has a fine tuning to return to the base station to have a charge.
Abstract:
A charging circuit and a charging method of a battery are disclosed. The charging circuit provides a charging current to charge the battery. The charging circuit includes a charging control module, a current detecting module and a compensation module. The charging control module provides a charging voltage. The current detecting module detects the charging current, and generates a detecting voltage according to the charging current. The compensation module detects the charging voltage, and provides a feedback voltage to the charging control module according to the detecting voltage and the charging voltage.
Abstract:
A cover assembly applied to an electronic device is disclosed. The electronic device includes a first component and a second component, and an opening is formed between the first component and the second component. The cover assembly includes a cover element, at least one first moving element, at least one second moving element and an elastic element. The cover element is disposed in the opening, attached to the second component, and abutted against the first component. The first moving element is connected to the cover element and includes at least one first moving part. The second moving element is connected to the second component and includes at least one second moving part. The elastic element is connected between the first moving element and the second moving element, and provides an elastic force to make the cover element continuously abutted against the first component and cover the opening.