Abstract:
An optical MEMS device is fabricated by forming and aperture through the thickness of a first substrate to enable an optical signal to be transmitted through the aperture. A movable, actuatable microstructure is formed on a second substrate. The second substrate is bonded to the first substrate. The first and second substrates are aligned to enable the microstructure to interact with the optical signal upon actuation of the microstructure. A conductive element is formed on the first substrate to serve as a contact or an interconnect. A channel is formed in the second substrate. An insulating layer can be deposited on the inside surfaces of this channel. When the first and second substrates are bonded together, the conductive element formed on the first substrate is disposed within the channel and is isolated from conductive regions of the resulting optical MEMS device. In another method, an optical MEMS device is fabricated from a substrate that comprises an etch-stop layer interposed between first and second bulk layers. The movable, actuatable microstructure is formed into the first bulk layer, and the aperture is formed through the second bulk layer.
Abstract:
A microelectromechanical (MEMS) apparatus has a base and a flap with a portion coupled to the base so that the flap may move out of the plane of the base between first and second position. The base may have a cavity with largely vertical sidewalls that contact a portion of the flap when the flap is in the second position Electrodes may be placed on the vertical sidewalls and electrically isolated from the base to provide electrostatic clamping of the flap to the sidewall. The base may be made from a substrate portion of a silicon-on-insulator (SOI) wafer and the flap defined from a device layer of the SOI wafer. The flap may be connected to the base by one or more flexures such as torsional beams. An array of one or more of such structures may be used to form an optical switch.
Abstract:
A monolithically fabricated micromachined structure (52) couples a reference frame (56) to a dynamic plate (58) or second frame for rotation of the plate (58) or second frame with respect to the reference frame (56). Performance of torsional oscillators or scanners (52) benefits greatly by coupling the frame (56) to the plate (58) or second frame with torsional flexure hinges (56) rather than torsion bars (54). Appendages (122), tethers (142) or an improved drive circuit enhance electrostatic drive stability of torsional oscillators (52). Wide and thin torsional flexure hinges (96) and isotopically pure silicon enhance thermal conductivity between the plate (58) and the frame (56). Dampening material bridging slots (232) adjacent to torsional flexure hinges (96) drastically reduce the dynamic member's Q. A widened section (252) of narrow torsional flexure hinges (96) permit inclusion of a torsion sensor (108). A dynamic member (58) that includes an actuator portion (302) performs light beam switching. Reflective coatings (76), wire grid polarizers (362), photo-detectors (372) and Fresnel lenses (376) enhance optical performance of the torsional scanners (58).
Abstract:
A method of making a micro-mirror light beam switch having a thin flexible movable support member for supporting a thin central reflective mirror surface thereon and for supporting a plurality of thin unimorph piezoelectric cantilevered mirror actuators mechanically coupled between a fixed substrate and movable hinging portions of the thin movable support member. The method employs thin film deposition techniques and photolithography for readily forming the extremely thin switch, whereby the components thereof are substantially co-planar for precisely controlled, multi-axial micro-mirror motion and low voltage operation necessary for the rapid switching of optical traffic from fiber to fiber in the next-generation optical networks.
Abstract:
Microelectromechanical devices may include a substrate having first and second optical fibers thereon. An optical shutter may also be provided. This optical shutter is mechanically coupled to a first plurality of arched beams that are supported at opposing ends by support structures which may be mounted on the substrate. A second plurality of arched beams are also provided on a first side of the optical shutter. These arched beams are also supported at opposing ends by support structures. A first brake member is provided that is coupled to the second plurality of arched beams. This first brake member contacts and restricts the optical shutter from moving in the ±y-direction when the second plurality of arched beams are relaxed, but releases the optical shutter when the second plurality of arched beams move in the −x direction. This ability to restrict movement of the optical shutter when the second plurality of arched beams are relaxed provides a degree of nonvolatile position retention. A third plurality of arched beams are also preferably provided on a second side of the optical shutter. A second brake member, which is coupled to the third plurality of arched beams, also contacts and restricts the shutter member from moving in the ±y direction when the third plurality of arched beams are relaxed, but releases the optical shutter when the third plurality of arched beams move in the +x direction.