Abstract:
The present invention provides a method and device of quantitatively or qualitatively examining and diagnosing chronic fatigue syndrome (CFS) by: irradiating a sample derived from an examinee or other animal with light having a wavelength in a range of 400 nm to 2500 nm or a wavelength in part of the range; detecting reflected light, transmitted light, or transmitted and reflected light to obtain an absorption spectral data; and analyzing absorbance at all measurement wavelengths or at specific wavelengths in the absorption spectral data by using an analytical model prepared beforehand.
Abstract:
An integrated circuit device (for example, a logic device or a memory device (such as, a discrete memory device)), including a memory cell array having a plurality of memory cells arranged in a matrix of rows and columns, multiplexer circuitry, coupled to the memory cell array, wherein the multiplexer circuitry includes a plurality of data multiplexers, each data multiplexer having a plurality of inputs, including (i) a first input to receive write data which is representative of data to be written into the memory cells of the memory cell array in response to a write operation, and (ii) a second input to receive read data which is representative of data read from memory cells of the memory cell array, and an associated output to responsively output data from one of the plurality of inputs, and syndrome generation circuitry, coupled to the multiplexer circuitry, to generate: (i) a write data syndrome vector using the write data and (ii) a read data syndrome vector using the read data.
Abstract:
An encoder spectrograph is used to analyze radiation from one or more samples in various configurations. The radiation is analyzed by spatially modulating the radiation after it has been dispersed by wavelength or imaged along a line. Dual encoder spectrographs may be used to encode radiation using a single modulator. An encoder spectrograph includes a modulator with radiation filters having non-equal widths and centered at non-equal intervals along the encoding axis of the modulator.
Abstract:
This invention relates to methods for processing in vivo skin auto-fluorescence spectra for determining blood glucose levels. The invention also relates to methods of classifying cells or tissue samples or quantifying a component of a cell or tissue using a multivariate classification or quantification model.
Abstract:
An apparatus for separating fluorescent light from light elastically scattered/reflected from a material illuminated with a broadband illumination source includes a polarization discriminator, which separates the substantially polarized elastically scattered/reflected light from the unpolarized fluorescent light, and a spectrometer to analyze the full and separated reflectance spectra. A linear polarizer may be provided to polarize the illumination source. A method for separating fluorescence light induced in a material by broadband light from an elastic scattering/reflection component includes providing polarization discrimination to separate the components, the fluorescence light being substantially unpolarized, and spectrally analyzing the reflectance components. The method may include linearly polarizing the light source. A fluorescence spectra may be extracted from a minimum reflectance spectra or from a residual polarization reflectance spectra.
Abstract:
The present invention relates to a method and an instrument for identifying a drug by Near Infrared (NIR) spectroanalysis. More specifically, the present invention relates to a method and an instrument for nondestructively identifying a drug by Near Infrared spectroanalysis technique in combination with stoichiometry, so as to confirm that the drug is in agreement with its labeled name.
Abstract:
A process and system for the analysis and/or control of a mixture of liquid hydrocarbons and biodiesel to determine biodiesel concentration includes a) measuring the near infrared absorption in at least two of the bands of two absorption bands from a portion of the range of 800-2500 nm; in particular 1100-2500 nm which are used to quantify the biodiesel content. b) taking each of the absorbances measured, or a mathematical function thereof, c) performing at least one mathematical computing or statistical treatment using the above absorbances or functions as individual independent variables, d) assigning and applying weighting constants or their equivalents to the independent variables, and, optionally e) applying the above steps using known compositions to calibrate the instrument and determine the weighting constants or equivalents, and further optionally f) outputting a signal indicative of the biodiesel concentration in the mixture, based on the absorbances or functions.
Abstract:
The invention provides a system and method utilizing fluorescence spectroscopy in the ultraviolet portion of the electromagnetic spectrum to determine species and concentration of gases, solids and liquids from a substantial standoff distance. Target materials under investigation may include explosives, drugs, bio-aerosols, and controlled substances such as narcotics. The basic measuring system comprises optics, a spectrograph, a detector, and an energy source (nullheadnull components), along with a computer and control electronics and power source.
Abstract:
A plastic identifying method of the present invention is provided with a step (i) of obtaining a first infrared absorption spectrum by irradiating infrared light of a predetermined wave number onto an item to be identified that contains plastic and measuring the intensity of the infrared light that is totally reflected by this item, and a step (ii) of identifying the plastic contained in the item to be identified by matching the first infrared absorption spectrum with a group of infrared absorption spectra that have been measured for predetermined materials, wherein the predetermined materials are a group of materials containing plastics, and each infrared absorption spectrum in this group of infrared absorption spectra is obtained by irradiating infrared light of a predetermined wave number onto a predetermined material, and measuring the intensity of the infrared light that is totally reflected by that material, and matching is carried out by comparing peaks in the first infrared absorption spectrum with peaks in each infrared absorption spectrum in the group of infrared absorption spectra. With this plastic identifying method, items that contain plastic can be identified accurately, even in such cases as when the items have been colored or contain additives or the like.