Abstract:
A MOSBJT (Metal Oxide Semiconductor Bipolar Junction Transistor) is formed to have both the higher current drive capability of the BJT and the smaller device area of the scaled down MOSFET. The MOSBJT includes a collector region and an emitter region comprised of a semiconductor material with a first type of dopant. A base region is disposed between the collector region and the emitter region, and the base region is comprised of a semiconductor material with a second type of dopant that is opposite of the first type of dopant. Unlike a conventional BJT, a base terminal of the MOSBJT is comprised of a dielectric structure disposed over the base region and comprised of a gate structure disposed over the dielectric structure. Unlike a conventional MOSFET, the dielectric structure of the MOSBJT is relatively thin such that a tunneling current through the dielectric structure results when a turn-on voltage is applied on the gate structure. This tunneling current is a base current of the MOSBJT. Furthermore, unlike a conventional MOSFET, the dielectric structure and the gate structure of the MOSBJT are not disposed over the collector region and the emitter region to prevent tunneling current between the gate structure and the collector and emitter regions.
Abstract:
An ultra-large-scale integrated (ULSI) circuit includes MOSFETs. The MOSFETs can include a gate structure above active lines manufactured by utilizing a spacer structure as a mask. The spacer structure can be silicon dioxide formed in an etch back process. The gate structure can surround more than one side of the active line.
Abstract:
An ultra-large-scale integrated (ULSI) circuit includes MOSFETs. The MOSFETs can include a gate structure manufactured by utilizing a spacer structure as a mask. The spacer structure can be silicon dioxide formed in an etch back process.
Abstract:
For fabricating a field effect transistor having a gate structure on a gate dielectric within an active device area of a semiconductor substrate, a hardmask dielectric material covers a top surface of the gate structure. A drain silicide is formed with a drain contact junction that is exposed, and a source silicide is formed with a source contact junction that is exposed. The drain silicide and the source silicide have a first thickness and are comprised of a first silicide material. The hardmask dielectric material that covers the top surface of the gate structure prevents formation of silicide with the gate structure during formation of the drain silicide and the source silicide. An encapsulating dielectric material is then deposited to cover the drain silicide and the source silicide using a low temperature of less than about 400° Celsius. The hardmask dielectric material is etched away from the top surface of the gate structure to expose the top surface of the gate structure. A gate silicide is formed with the gate structure, and the gate silicide has a second thickness and is comprised of a second silicide material. The encapsulating dielectric material covering the drain silicide and the source silicide prevents further formation of the drain silicide and the source silicide during formation of the gate silicide. The present invention may be used to particular advantage when the first thickness of the drain and source suicides is less than the second thickness of the gate silicide and when the first silicide material of the drain and source silicides is different from the second silicide material of the gate silicide.
Abstract:
For fabricating a field effect transistor on a buried insulating material in SOI (semiconductor on insulator) technology, a dielectric island is formed on the buried insulating material. An opening is etched through the buried insulating material at a location away from the dielectric island. An amorphous semiconductor material is deposited to fill the opening through the buried insulating material and to surround the dielectric island. The amorphous semiconductor material is polished until the top surface of the dielectric island is exposed and such that the amorphous semiconductor material surrounds the dielectric island. A layer of the amorphous semiconductor material is deposited on top of the dielectric island and on top of the amorphous semiconductor material surrounding the dielectric island. The amorphous semiconductor material surrounding the dielectric island and the layer of the amorphous semiconductor material are recrystallized to form a substantially single crystal structure of semiconductor material. A gate dielectric and a gate electrode of the field effect transistor are formed on top of a thinner portion of the semiconductor material disposed on the dielectric island. A drain extension region and a source extension region are formed by implanting a drain and source dopant into exposed regions of the thinner portion of the semiconductor material disposed on the dielectric island to minimize short channel effects. A drain contact region and a source contact region are formed from a thicker portion of the semiconductor material disposed to the sides of the dielectric island. The drain and source silicides are formed with the thicker drain and source contact regions to minimize parasitic resistance at the drain and source.
Abstract:
A dual doped CMOS gate structure utilizes a nitrogen implant to suppress dopant inter-diffusion. The nitrogen implant is provided above standard trench isolation structures. Alternatively, an oxygen implant can be utilized. The use of the implant allows an increase in packing density for ultra-large-scale integrated (ULSI) circuits. The doping for N-channel and P-channel active regions can be completed when the polysilicon gate structures are doped.
Abstract:
A method of forming a metal oxide semiconductor (MOS)-controlled bipolar transistor includes tilt angle implanting a first impurity into a semiconductor substrate and implanting a second impurity into the semiconductor substrate to form an emitter and a collector. A corresponding transistor arranged as to combine the large current drive capacity of a bipolar junction transistor (BJT) with the smaller device size of a metal oxide semiconductor field effect transistor (MOSFET) is also provided. The transistor includes a semiconductor structure, a gate located proximate the semiconductor structure, a gate insulator disposed intermediate the semiconductor structure and the gate, a source region located in the semiconductor structure, a drain region located in the semiconductor structure, and a buffer region located in the semiconductor structure proximate the drain region.
Abstract:
A method of fabricating an integrated circuit with ultra-shallow source/drain junctions utilizes a dual amorphization technique. The technique creates a shallow amorphous region and a deep amorphous region 300 nm thick. The shallow amorphous region is between 10-15 nm below the top surface of the substrate, and the deep amorphous region is between 150-200 nm below the top surface of the substrate. The process can be utilized for P-channel or N-channel metal oxide semiconductor field effect transistors (MOSFETs). A step separate from the annealing step for the source/drain regions is utilized for annealing the gate conductor.
Abstract:
A method of manufacturing an integrated circuit to optimize the contact resistance between impurity diffusing layers and silicide is disclosed herein. The method includes implanting a first material to a layer of semiconductor to create a buried amorphous silicon layer; implanting a second material in the layer of semiconductor and buried amorphous layer, forming a dopant profile region with a curved shape; depositing a layer of metal on the layer of semiconductor; melting the buried amorphous layer to reconfigure the curved shape to a substantially vertical profile of maximum dopant concentration; and forming silicide with the layer of semiconductor and layer of metal, the bottom of the silicide located in the vertical shape on the dopant profile region.
Abstract:
A method for making a ULSI MOSFET includes establishing a gate void in a field oxide layer above a silicon substrate, after source and drain regions with associated source and drain extensions have been established in the substrate. A gate electrode is deposited in the void and gate spacers are likewise deposited in the void on the sides of the gate electrode, such that the gate electrode is spaced from the walls of the void. The spacers, not the gate electrode, are located above the source/drain extensions, such that fringe coupling between the gate electrode and the source and drain extensions is suppressed.