摘要:
An integrated circuit (IC) includes one or more silicon-on-insulator (SOI) transistors. Each SOI transistor includes a first source region, a second source region, a drain region, a body contact region, a gate, and first and second isolation regions. The body contact region couples electrically to a body of the SOI transistor. The gate controls current flow between the first and second source regions and a drain region of the transistor. The first isolation region is disposed between the first source region and the body contact region. The second isolation region is disposed between the second source region and the body contact region.
摘要:
A semiconductor device includes a wafer having a semiconductor layer with source, body and drain regions. A electrically-conducting region of the semiconductor region overlaps and electrically couples the source region and the body region. The electrical coupling of the source and body regions reduces floating body effects in the semiconductor device. A method of constructing the semiconductor device utilizes spacers, masking, and/or tilted implantation to form an source-body electrically-conducting region that overlaps the source and body regions of the semiconductor layer, and a drain electrically-conducting region that is within the drain region of the semiconductor layer.
摘要:
A system and method for providing a trench in a material using semiconductor processing is disclosed. In one aspect, the method and system include (a) providing a spacer, (b) etching the material, and (c) repeating steps (a) and (b) a sufficient number of times to achieve a desired profile for the trench. The spacer is insensitive to an etch of the material. The material is exposed adjacent to the spacer. In another aspect, the method and system include (a) providing a spacer, (b) etching the material, (c) stripping the spacer, and (d) repeating steps (a) through (c) until a desired profile for the trench is achieved. Each time steps (a) through (c) are repeated via step (d), a thinner spacer is provided. In addition, the spacer is insensitive to an etch of the material. The material is exposed adjacent to the spacer.
摘要:
Complementary metal-oxide-semiconductor (CMOS) transistors (18,22) are formed with vertical channel regions (30,52) on an insulator substrate (14). Highly doped polysilicon gates (44,68) are formed in trenches (36,58) to extend laterally around the channel regions (30,52) as insulatively displaced therefrom by gate insulators (41,62) that are grown on the sidewalls of the trenches (36,58). The transistors (18,22), which are formed in respective mesas (20,24) have deeply implanted source regions (28,50) that are ohmically connected to the semiconductor surface via respective source connector regions (34,70).
摘要:
A non-volatile semiconductor device structure and method for low power applications comprises a trenched floating gate and corner dopings and further includes a well junction region with a source region and a drain region therein, and includes a channel region, an inter-gate dielectric layer, and a control gate. The trenched floating gate is formed in a trench etched into the semiconductor substrate and has a top surface which is substantially planar with a top surface of the semiconductor substrate. The source and drain regions are laterally separated by the trench in which the trenched floating gate is formed and have a depth which is approximately less than the depth of the trench. The channel region is formed beneath a bottom surface of the trench and is doped to form a depletion type channel region. Corner dopings are diffusion regions formed adjacent to the source and drain regions of the semiconductor substrate and are immediately contiguous the upper vertical sides of the trench and the substrate surface.
摘要:
A non-volatile semiconductor device structure and method for low power applications comprises a trenched floating gate and corner dopings and further includes a well junction region with a source region and a drain region therein, and includes a channel region, an inter-gate dielectric layer, and a control gate. The trenched floating gate is formed in a trench etched into the semiconductor substrate and has a top surface which is substantially planar with a top surface of the semiconductor substrate. The source and drain regions are laterally separated by the trench in which the trenched floating gate is formed and have a depth which is approximately less than the depth of the trench. The channel region is formed beneath a bottom surface of the trench and is doped to form a depletion type channel region. Corner dopings are diffusion regions formed adjacent to the source and drain regions of the semiconductor substrate and are immediately contiguous the upper vertical sides of the trench and the substrate surface.
摘要:
Self-aligned silicide contacts having a height that is at least about equal to the gate height are formed by depositing silicon over active regions of the substrate, depositing a refractory metal over the silicon, and heating the silicon and the refractory metal. The deposited silicon may be amorphous silicon in which case the deposition temperature can be as low as 580.degree. C. If polysilicon is deposited, the deposition temperature has to be at least 620.degree. C.
摘要:
A trench isolation structure in a semiconductor substrate includes a trench opening in the surface of the substrate and a seamless oxide layer filling the trench. The seamless oxide layer is formed by forming a first oxide layer in the trench, adding a silicon material overlying the first oxide layer and within a gap on the first oxide layer between the trench sidewalls that tend to be produced in the preceding step, and oxidizing the silicon material to form a second oxide layer. The deposited silicon material expands during oxidation, filling the trench opening to produce a seamless oxide fill of the trench. This seamless trench isolation structure prevents accumulation of materials that reduce the yield of the finished semiconductor product.
摘要:
A method for fabricating a semiconductor device including a silicon substrate and plural silicon stacks thereon includes forming a nitride shield layer on the substrate and stacks to cover the stacks, such that the stacks are protected from loss of critical dimension during subsequent isolation trench formation and oxidation. In other words, the edge of each stack, and thus the critical dimension of the silicon layers of the stack, is protected from oxidation by the nitride shield layer.
摘要:
A field effect transistor is formed across one or more trenches (26) or bars (120), thereby increasing the effective width of the channel region and the current-carrying capacity of the device.