Abstract:
A method to determine viability or non-viability of seeds is disclosed, wherein individual seeds or seed populations are analysed by a spectrometric method to provide spectral data; and said spectral data are compared with reference spectral data obtained for a reference seed or reference seed population by means of said spectrometric method and calibrated with reference to viability or non-viability of said reference seed or seed population by means of a calibrating method based on pattern recognition. Suitable calibrating methods are based on multivariate or megavariate analysis, neural network systems and regression analysis.
Abstract:
Methods of screening for a tumor or tumor progression to the metastatic state are provided. The screening methods are based on the characterization of DNA by principal components analysis of spectral data yielded by Fourier transform-infrared spectroscopy of DNA samples. The methods are applicable to a wide variety of DNA samples and cancer types.
Abstract:
A signal processing method in a processor is provided for performing a multicomponent analysis of a signal resulting from a spectral response of a mixture comprising a plurality of spectrally resolvable molecular species. The method provides both a determination of a concentration estimate and a statistical confidence interval for each species. In the method, a data vector d is received from a multichannel detector, data vector d having a length n.sub.c, n.sub.c being the number of detector channels being monitored. A calibration matrix K having n.sub.c rows and n.sub.p columns is provided wherein n.sub.c is larger than n.sub.p, n.sub.p being the number of spectrally resolvable molecular species. Next, a concentration estimate vector c having length n.sub.p is determined. Finally, a confidence interval CI.sub.i for each of the elements of the concentration estimate vector is determined according to the expressionCI.sub.i =c.sub.i .+-.(varcovar(c.sub.ii)).sup.1/2 Q.sub.(cl,nf)where Q is the critical value of a statistical distribution for a given level of confidence, cl, and a given number of degrees of freedom n.sub.f where n.sub.f =n.sub.c -n.sub.p. The invention further includes a program storage device embodying the method; a DNA sequencing process employing the method; and, an apparatus for carrying out the method.
Abstract:
The accuracy of the elemental analysis of a sample by mass spectrometry is enhanced by providing plural estimates of the likely mass spectrum of the sample. These estimates are compared with experimentally obtained spectra to generate trial sets of possible compositions of the sample. The generated trial sets are subsequently employed to obtain mean values for the amount of each constituent of the sample.
Abstract:
A method for on-line analysis of polycyclic aromatic hydrocarbons (PAH) in aerosols. The aerosols are collected on non-fluorescing filter paper, excited to fluorescence and imaged spectrally. The images are compared with spectra in a database to determine and quantify the PAH species present. The scope of the invention is broader than fluorescence, and includes excitation analysis of particulate matter generally.
Abstract:
A method for predicting the properties of crude oils or their boiling fractions which comprises selecting a chemical or perceptual or physical or performance property or groups of properties of the crude oil or its boiling fractions and creating a training set from reference samples which contain characteristic molecular species present in the crude oil or its boiling fractions. The reference samples are subjected to GC/MS analysis wherein the often collinear data generated is treated by multivariate correlation methods. The training set produces coefficients which are multiplied by the matrix generated from a GC/MS analysis of an unknown sample to produce a predicted value of the chemical, performance, perceptual or physical property or groups of properties selected.
Abstract:
The present invention relates to a method of determining physical and/or chemical properties in water samples containing suspended substances and/or particles, the physical and/or chemical properties being singly or jointly determined as amount of nitrate, iron, ammonium, phosphate, total nitrogen or total phosphorous; turbidity, chemical oxygen demand (COD) and/or biological oxygen demand (BOD).
Abstract:
The invention concerns a method for the quantitative analysis of sample liquids. A sample is dried and irradiated with visible and/or infrared light. Light that is diffusely or specularly reflected from the sample and sample carrier is detected and analysed. Furthermore the invention concerns a system for carrying out the method according to the invention and a sample carrier having a diffusely or specularly reflecting surface.
Abstract:
An improved method is provided for determining when a set of multivariate data (such as a chromatogram or a spectrum) is an outlier. The method involves using a procedure such as Principal Component Analysis to create a model describing a calibration set of spectra or chromatograms which is known to be normal, and to create residuals describing the portion of a particular spectrum or chromatogram which is not described by the model. The improvement comprises using an average residual spectrum calculated for the calibration set, rather than the origin of the model as a reference point for comparing a spectrum or chromatogram obtained from an unknown sample. The present invention also includes separating a complex set of data into various sub-parts such as sub-chromatograms or sub-spectra, so that outliers in any sub-part can be more readily detected. In one particular embodiment, the invention is directed towards a method for dividing a chromatogram into the sub-parts of peak information, baseline shape, baseline offset, and noise.
Abstract:
Method and apparatus for the spectrophotometric assay of aqueous liquids are provided with a pump for aspirating liquids, a filter with two outlets for filling a cell in which the interferometric measurements are made at a temperature between 35 and 50.degree. C. at a maximum fluctuation of 0.2.degree. C., and with a maximum relative humidity of 0.2%. Absorption curves A(f) are determined with respect to a matrix and the concentrations of components to be assayed are calculated by the use of standard equations.