Abstract:
Technologies are generally described for methods, systems, and structures that include patterns formed by optical lithography. In some example methods, a photoresist layer is applied to a substrate, and a grapheme layer can be applied to the photoresist layer. Light can be applied through a mask to the graphene layer, where the mask includes a pattern. The light can form the pattern on the graphene layer such that the pattern forms on the photoresist layer.
Abstract:
Disclosed herein are methods and devices for treating diverticular disease. The method can include injecting a sterile fluid between a mucosal layer of the diverticulum and a serosal layer of the diverticulum to form an expanded cavity in the diverticulum comprising the sterile fluid; injecting a filler material in the expanded cavity; and removing at least a portion of the sterile fluid from the expanded cavity. The device can include a flexible overtube having a lumen; a flexible shaft at least partially disposed within the lumen of the flexible overtube; a cutting tip at a distal end of the flexible shaft; an input port fluidly coupled to the lumen of the flexible shaft; and an output port fluidly coupled to a proximal end of the lumen of the overtube. Also disclosed herein are systems and kits for treating diverticular disease.
Abstract:
Technologies are generally provided for dynamically managing execution of sequential programs in a multi-core processing environment by dynamically hosting the data for the different dynamic program phases in the local caches of different cores. This may be achieved through monitoring data access patterns of a sequential program initially executed on a single core. Based on such monitoring, data identified as being accessed by different program phases may be sent to be stored in the local caches of different cores. The computation may then be moved from core to core based on which data is being accessed, when the program changes phase. Program performance may thus be enhanced by reducing local cache miss rates, proactively reducing the possibility of thermal hotspots, as well as by utilizing otherwise idle hardware.
Abstract:
Technologies are presented for a multi-step progressive auto-fill function that allows a series of gestures or touches to activate and guide an auto-fill function suitable for information entry. A first gesture may call forth a group of contextual domains for information. A subsequent gesture or motion may cause the selection of a contextual domain, and another action may allow the selection of particular content for placement at a location indicated by the first gesture.
Abstract:
Methods for manipulating and/or reinforcing tissues are provided. The method includes applying a tissue reinforcement material to at least a portion of tissue to be manipulated and applying energy to one or both of the tissue reinforcement material and the tissue.
Abstract:
Technologies related to personal assistant context building are generally described. In some examples, network service communications, such as network traffic resulting from the use of mobile applications or “apps” on a mobile device, may be captured, parsed, and included in personal assistant context databases for use in configuring automated personal assistant user interaction operations. In some examples, parsing services may be provided to parse forwarded network service communications and generate converted data for inclusion in personal assistant context databases.
Abstract:
Disclosed are derivatives of (tetrahydropyranyl)methyl acrylamide and polymers derived therefrom, as well as methods of making such compounds and polymers. Adhesives, coatings, and plastics which include such polymers are also described.
Abstract:
Technologies are generally described for gas filtration and detection devices. Example devices may include a graphene membrane and a sensing device. The graphene membrane may be perforated with a plurality of discrete pores having a size-selective to enable one or more molecules to pass through the pores. A sensing device may be attached to a supporting permeable substrate and coupled with the graphene membrane. A fluid mixture including two or more molecules may be exposed to the graphene membrane. Molecules having a smaller diameter than the discrete pores may be directed through the graphene pores, and may be detected by the sensing device. Molecules having a larger size than the discrete pores may be prevented from crossing the graphene membrane. The sensing device may be configured to identify a presence of a selected molecule within the mixture without interference from contaminating factors.
Abstract:
Technologies are generally described for a speech recognition scheme. In some examples, a method performed under control of a speech recognition system may include receiving, from a first device, first data including a first signal captured by the first device, first location information of the first device, and first time information corresponding to the captured first signal; cancelling first noise from the captured first signal based at least in part on the first location information and the first time information, and estimating a first voice signal of a first user of the first device, wherein the first noise is associated with a second voice signal of a second user of a second device located adjacent to the first device; and translating the first voice signal into a first command for the first device.
Abstract:
Technologies are generally described for generating and recording holograms of an object using a plurality of light sources and an array of image sensors arranged to surround the object. In various examples, an apparatus may be configured to irradiate a plurality of light beams from multiple light sources to a corresponding number of beam splitters, which are configured to generate a first portion of the light beams that can be irradiated on the object, and a second portion of the light beams that can be reflected by a mirror unit to generate reference beams. Some apparatus can also include an array of image sensors that may be configured to receive images of interference caused by the reference beams and object beams scattered by the object.