Abstract:
A structure for a semiconductor resistive element, applicable in particular to power components, having a high concentration substrate of the n type, a first epitaxial layer of the n type, a region of the p type arranged on said first epitaxial layer so to form the resistive element proper, a second epitaxial layer of n type grown on said first epitaxial layer to make the region of the p type a buried region, and an additional layer of the n type with a higher concentration with respect to the second epitaxial level, positioned on the embedded region. Low resistivity regions of the p type adapted to make low resistivity deep contacts for the resistor are provided. The buried region can be made either with a development that is substantially uniform in its main direction of extension or so to present, at on part of its length, a structure of adjacent subregions in marginal continuity. In this way, either a resistive element presenting a substantially linear performance in all ranges of applied voltage or a resistive element presenting a marked increase of the resistance value as the applied voltage increases can be made. This all with the additional possibility of selectively varying the resistance value demonstrated before the increase.
Abstract:
The multilevel memory device has a memory section containing cells that can be programmed with a predetermined number of levels greater than two, i.e., a multilevel array, and a memory section containing cells that can be programmed with two levels, i.e., a bilevel array. The multilevel array is used for storing high-density data, for which speed of reading is not essential, for example for storing the operation code of the system including the memory device. On the other hand, the bilevel array is used for storing data for which high speed and reliability of reading is essential, such as the BIOS of personal computers, and the data to be stored in a cache memory. The circuitry parts dedicated to programming, writing of test instructions, and all the functions necessary for the operation of the memory device, can be common to both arrays.
Abstract:
A voltage/current controller device, particularly for interleaving switching regulators, comprises: a DC/DC converter having a plurality of modules, with each module including a drive transistor pair connected in series between first and second supply voltage references, a current sensor connected to one transistor in the pair, and a current read circuit connected to the sensor. Advantageously, the read circuit comprises a transconductance amplifier connected across the current sensor to sense a voltage signal related to a load current being applied to each module, the transconductance amplifier reading the voltage signal with the transistor in the conducting state.
Abstract:
Disclosed is a bootstrap circuit in DC/DC static converters having the characteristic of comprising a fixed frequency signal, a recharge circuit of a capacitor and current generator means, said generator means controlled so as to emit current pulses, in synchrony with said fixed frequency signal, of a predetermined duration, every time that charge accumulated by said capacitor goes below a predetermined level.
Abstract:
A circuit extends the output voltage range of an integrator circuit wherein the input signal is used to produce an output signal, and the voltage of the output signal develops monotonically within a predetermined range of possible values. The integrator circuit is driven within an integration time period such that each time the signal at its output reaches a limit of the range of values, the integrator circuit starts a subsequent integration stage of the input signal in which the output signal develops again within the above-mentioned range. This takes place by resetting the integrator circuit or by a reversal of the characteristic slope of the output signal. This is combined with storing the number of occasions on which these interventions have occurred as determined by a counter. This enables the actual voltage value of the signal resulting from the integration to be calculated by a relatively straightforward mathematical operation from the reading of the counter, and from the signal currently present at the output of the integrator at the end of the integration period.
Abstract:
In accordance with an embodiment, a digital-to-analog converter (DAC) includes: a W-2W current mirror comprising a first plurality of MOS transistors and a second plurality of MOS transistors, wherein ones of the second plurality of MOS transistors are coupled between adjacent ones of the first plurality of MOS transistors; and a bulk bias generator having a plurality of output nodes coupled to corresponding bulk nodes of the first plurality of MOS transistors, wherein the plurality of output nodes are configured to provide voltages that are inversely proportional to temperature.
Abstract:
In accordance with an embodiment, a method of measuring a load current flowing through a current measurement resistor coupled between a source node and a load node includes: measuring a first voltage across a replica resistor when a first end of the replica resistor is coupled to the source node and a second end of the replica resistor is coupled to a reference current source; measuring a second voltage across the replica resistor when the second end of the replica resistor is coupled to the source node and the first end of the replica resistor is coupled to the reference current source; measure a third voltage across the current sensing resistor; and calculating a corrected current measurement of the load current based on the measured first voltage, the measured second voltage and the measured third voltage.
Abstract:
A circuit includes an amplifier and a feedback network coupled between the input and the output of the amplifier. The feedback network includes a plurality of parallel coupled branches, each branch having a first selection switch coupled to the input, a second selection switch coupled to the output, and an impedance between the first and second selection switches. Each branch includes a plurality of signal feedback paths coupled in parallel, each having a tuning switch coupled between the first selection switch and the second selection switch of that branch. A control unit is coupled to the feedback network and configured to vary a gain of the amplifier by selectively placing the first and second selection switches of each branch in a conductive state or a non-conductive state and selectively activating respective tuning switches of any branch having first and second selection switches in the conductive state.
Abstract:
A voltage regulator receives an input voltage and produces a regulated output voltage. A first feedback network compares a feedback signal to a reference signal to assert/de-assert a first pulsed control signal when the reference signal is higher/lower than the feedback signal. A second feedback network compares the output voltage to a threshold signal to assert/de-assert a second control signal when the threshold signal is higher/lower than the output voltage. A charge pump is enabled if the second control signal is de-asserted and is clocked by the first pulsed control signal to produce a supply voltage higher than the input voltage. A first pass element is enabled when the second control signal is asserted and is selectively activated when the first pulsed control signal is asserted. A second pass element is selectively activated when the second control signal is de-asserted.
Abstract:
A circuit includes a high-side switch and a low-side switch. A first inverter includes first and second discharge current paths activatable to sink first and second discharge currents, respectively, from the control terminal of the high-side switch. A second inverter includes first and second charge current paths activatable to source first and second charge currents to the control terminal of the low-side switch. A high-side sensing current path includes an intermediate high-side control node, and a low-side sensing current path includes an intermediate low-side control node. The second discharge current path is selectively enablable in response to a high-side detection signal at the intermediate high-side control node having a high logic value, and the second charge current path is selectively enablable in response to a low-side detection signal at the intermediate low-side control node having a low logic value.