Abstract:
[Task] The adhesion resistance of Cu—Bi based or Cu—Sn—Bi based alloy is lower than that of Cu—Sn—Pb based alloy, and also since conformability of the former alloy is low. Therefore, when Bi of the former alloy adheres onto an opposite shaft, seizure of the former alloy is likely to occur as compared with the case of the latter Cu—Sn—Pb based alloy. In is alloyed in the Bi phase of the Cu—Sn—Bi—In based copper alloy. The In-alloyed Bi phase has a considerably low melting point and therefore the sliding properties deteriorate.[Means for Solving] A Pb-free copper-based sintered sliding material has a composition that 0.5 to 15.0 mass % Bi and 0.3 to 15.0 mass % In, with the balance being Cu and inevitable impurities. With regard to the existence of Cu, Bi, and In, the material consists of a Cu matrix containing In, a Bi phase, and an In concentrated region in said Cu matrix at a boundary of said Bi phase.
Abstract:
A high-frequency magnetic material is provided and includes: an oxide phase including: a first oxide of a first element being at least one selected from the group consisting of Mg, Al, Si, Ca, Zr, Ti, Hf, Zn, Mn, a rare-earth element, Ba, and Sr, and a second oxide of a second element being at least one selected from the group consisting of Li, Na, K, Rb, Cs, Be, Mg, Ca, Sr, Ba, and Zn, the first oxide and at least a part of the second oxide being formed into a solid solution; and magnetic metal particles including at least one of Fe and Co and having a particle size of 1 to 100 nm, the magnetic metal particles being deposited on a surface and inside of the oxide phase, the magnetic metal particles occupying 50% of a volume of the high-frequency magnetic material exclusive of a void.
Abstract:
In a Pb-free copper-based sintered alloy containing from 1 to 30% of Bi and from 0.1 to 10% of hard matter particles having from 10 to 50 μm of average particle diameter, the Bi phase has a smaller average particle diameter than that of the hard matter particles and is dispersed in the Cu matrix, or the hard matter particles having 50% or less of a contact length ratio with the Bi phase based on the total circumferential length of the hard particle, which are in contact with said Bi phase, are present in a ratio of 70% or more based on the entire number of the hard matter particles.
Abstract:
Disclosed are methods of making multi-element, finely divided, metal powders containing one or more reactive metals and one or more non-reactive metals. Reactive metals include metals or mixtures thereof from titanium (Ti), zirconium (Zr), hafnium (Hf), tantalum (Ta), niobium (Nb), vanadium (V), nickel (Ni), cobalt (Co), molybdenum (Mo), manganese (Mn), and iron (Fe). Non-reactive metals include metals or mixtures such as silver (Ag), tin (Sn), bismuth (Bi), lead (Pb), antimony (Sb), zinc (Zn), germanium (Ge), phosphorus (P), gold (Au), cadmium (Cd), berrylium (Be), tellurium (Te).
Abstract:
One embodiment of the invention includes first particles comprising an intermetallic compound comprising titanium and aluminum; second particles comprising aluminum; and third particles comprising titanium.
Abstract:
A macroscopic composite sintered powder metal article including a first region including cemented hard particles, for example, cemented carbide. The article includes a second region including one of a metal and a metallic alloy selected from the group consisting of a steel, nickel, a nickel alloy, titanium, a titanium alloy, molybdenum, a molybdenum alloy, cobalt, a cobalt alloy, tungsten, and a tungsten alloy. The first region is metallurgically bonded to the second region, and the second region has a thickness of greater than 100 microns. A method of making a macroscopic composite sintered powder metal article is also disclosed, herein. The method includes co-press and sintering a first metal powder including hard particles and a powder binder and a second metal powder including the metal or metal alloy.
Abstract:
The invention relates to a method for preparation of a material adapted to reversible storage of hydrogen, including steps consisting of providing a first powder of a magnesium-based material, hydrogenating the first powder to convert at least part of the first powder into metal hydrides, mixing the first hydrogenating powder with a second powder additive, the proportion by mass of the second powder in the mix obtained being between 1% and 20% by mass, wherein the additive is formed from an alloy with a centred cubic structure based on titatnium, vanadium and at least one other metal chosen from chromium or manganese, and grinding the mix of first and second powders.
Abstract:
An object of the present invention is to provide a porous liquid absorbing-and-holding member having a high absorbing capacity for a liquid owing to capillarity and having in itself a structure capable of holding a large amount of the liquid, a process for producing this member, and a member for absorbing and holding an alcohol used as a fuel for a fuel cell. The porous liquid absorbing-and-holding member provided by the present invention is that including a porous sintered product having a skeleton formed by sintering of metal powder around voids and subjected to hydrophilicity-imparting treatment. The hydrophilicity-imparting treatment is preferably the formation of one or more substances selected from the group consisting of silicon oxides, titanium oxides, chromium oxides and aluminum oxide on the skeleton.
Abstract:
For cooling electronics with high heat fluxes, a lattice wick system is disclosed that has a plurality of granular wicking walls configured to transport liquid through capillary action in a first direction, each set of the plurality of granular wicking walls forming respective vapor vents between them to transport vapor. Granular interconnect wicks are embedded between respective pairs of the granular wicking walls to transport liquid through capillary action in a second direction substantially perpendicular to the first direction. The granular interconnect wicks have substantially the same height as said granular wicking wall so that the plurality of granular wicking walls and granular interconnect wicks enable transport of liquid through capillary action in two directions and the plurality of vapor vents transport vapor in a direction orthogonal to the first and second directions.
Abstract:
Engine components that include a compacted powder material comprising a nickel-based superalloy having less than five parts per million sulfur, by weight and methods of forming the components are provided. In an embodiment, by way of example only, a method includes flowing a gas into a can with a metal powder therein, the gas comprising hydrogen, the can configured to be used for a consolidation process, and the superalloy comprising sulfur. Gas is flowed into and then removed from the can. A sulfur content of the removed gas is determined during the process. The can and the metal powder therein are subjected to the consolidation process, if a determination is made that the sulfur content of the metal powder is below a threshold value, the threshold value being a value below about 1 part per million by weight.