Abstract:
It comprises first and second rotatable elements and driving device for driving them in rotation comprising hydraulic chambers which volume is defined by the relative position of the elements in the plane of rotation and pumps for filling the chambers with fluid to cause their expansion for rotating the elements, and a pump controller for controlling rotation of the elements. The volume of chambers is defined by portions of the first element (200) and portions of the second element, or by space between portions of the first element with a portion of the second element (300) being movably provided inside chambers defining variable volume sub-chambers.
Abstract:
In a first aspect, the invention provides a hub to be mounted on a wind turbine having a frame to be surrounded by the hub. The hub comprises a front bearing seat and a rear bearing seat for rotatably mounting the hub on the frame through respective front and rear bearings, in such a way that the frame is provided at least partially internally of the hub. The hub further comprises a plurality of beams connecting the front bearing seat and the rear bearing seat. In a second aspect, the invention provides a wind turbine comprising a hub according to the first aspect of the invention and a frame surrounded by the hub. The hub is rotatably mounted on the frame through respective front and rear bearings, in such a way that the frame is provided at least partially internally of the hub.
Abstract:
The present invention relates to a rotor for a rotating machine and more in particular, to a component of the rotor. The present invention generally relates to an improved cooling configuration of a rotating machine. Unlike generally known arrangements, the solution proposed herein does not guide coolant fluid to parts which require cooling. Instead, the heat generated from the losses in the rotor pole is transferred to parts having favourable characteristics for establishing heat exchange.
Abstract:
A control device includes a valve, having a body connected to the first chamber of a cylinder via a first hydraulic connection and to the second chamber of the cylinder via a second hydraulic connection. The control device includes a first hydraulic duct connected to a first actuating-fluid source, and a second hydraulic duct connected to a second actuating-fluid source. The hydraulic ducts communicate with the body of the valve. The valve further includes a distribution device that is movable within the body of the valve, between a first position, in which the distribution device places the first hydraulic connection and the first hydraulic duct in fluid communication, and a second position, in which the distribution device places the second hydraulic connection and the second hydraulic duct in fluid communication.
Abstract:
Method for avoiding voltage instability in an electrical grid of an offshore wind park, the offshore wind park electrical grid being connected at a first end of a high voltage alternating current (HVAC) transmission and the main land electrical grid being connected at a second end of the HVAC transmission, each of the wind turbines being connected to the wind park electrical grid, the method comprises determining a main land phase angle at or near the second end of the HVAC transmission; measuring an individual wind turbine phase angle at one or more wind turbines; determining the difference between each of the measured individual wind turbine phase angles and the main land phase angle; and determining whether the difference between one of the measured individual wind turbine phase angle and the main land phase angle exceeds a threshold phase angle difference.
Abstract:
The invention relates to a hoop including a cylinder which, so that it can be mounted around a shaft, is formed by multiple parts that are assembled together using assembly means that can produce an assembly without deformation of an external surface of the cylinder. A ring, of which an external surface forms the internal surface of the bearing and which, so that it can be secured to the external wall of the cylinder, is formed by multiple elements that are secured to the cylinder by securing means that can maintain a machining tolerance of the external surface of the ring.
Abstract:
A device for the cathodic protection of a metal wall against corrosion in a saline environment, includes an anode and means for connecting said anode to said wall. The anode has a higher electrochemical potential than the wall, wherein the anode is placed in a compartment delimited by a wall permeable to electrons and, optionally, to water. The device includes a porous outer layer made from a material selected from: polymeric materials, ceramic materials or hydrated inorganic materials and at least one porous layer having the ability to collect the cations emitted by the anode during the dissolution of same. The material forming the at least one layer is selected from osmotic membranes, active carbon, a cation exchange resin such as a zeolite, a cation-collecting polymer with nanofillers, cation-collecting mineral compounds such as phyllosilicates and inosilicates, cation-retaining nanofiltering semi-permeable organic microporous membranes.
Abstract:
This method makes it possible to regulate the power of an energy conversion installation (100) for converting mechanical energy into electrical energy. The installation (100) comprises a machine (1), an alternator (2), a first converter (41), an electrical cable (3) which links the terminals of the alternator (2) to the first converter (41), a second converter (42), means of measurement (8, 41, 43), a control unit (5), the first converter (41) modulating the frequency and the current of the first electrical signal (S2). The method comprises a first prior step in which the value of a first quantity proportional to a reactive power is implemented in the control unit and a main step in which the control unit (5) determines the drive frequency and the drive current on the basis of an error equal to the difference between the first quantity and a second quantity which is both homogeneous to the first quantity, dependent on the reactive power of the first converter (41) and determined on the basis of a measured value of the current of the first electrical signal (S2).
Abstract:
The double-regulated turbine comprises a spherical hub, adapted to rotate around a first rotation axis, and blades, which are each able to be swivelled relative to the hub around a second rotation axis, transversal to the first rotation axis, by respective coupling flanges that are mounted fixedly on the spherical hub and that include each an attachment surface for a corresponding blade. The attachment surface of the coupling flanges includes a flat portion.
Abstract:
Methods of operating a set of wind turbines for providing a total power demand to a grid according to a grid requirement are provided. A first group of wind turbines is configured to generate an individual active power based on an individual set-point. First individual set-points are generated for the first group such that the set of wind turbines generates the total active power. If a selection of the first group of wind turbines is operating within an individual exclusion range, the operation of the se wind turbines is limited to a maximum period. When the maximum period is reached, second individual set-points are generated to cause these wind turbines to operate outside exclusion range, and third individual set-points are generated for one or more other wind turbines to cause the set of wind turbines to generate the total active power. Systems suitable for such methods are also provided.