Abstract:
The present invention describes a novel bacterial nuclease of the CRISPR-Cas9 system from the bacterium Clostridium celluloliticum, as well as the use thereof to form strictly specific double-strand breaks in a DNA molecule. This nuclease has unusual properties and may be used as a tool for introducing modifications at strictly defined sites in the genomic DNA sequence of unicellular or multicellular organisms. Thus, the versatility of the available CRISPR-Cas9 systems is increased, which will enable the use of Cas9 nucleases from various organisms for cutting genomic or plasmid DNA in a larger number of specific sites and in wider temperature ranges. Further, provided is more facile editing of the genome of the biotechnologically significant bacterium Clostridium celluloliticum.
Abstract:
The present invention relates to novel compounds of formula I: which have the properties of CDK8/19 inhibitors, to a pharmaceutical composition comprising said compounds, and to use thereof as a medicine for treating diseases and disorders.
Abstract:
The present invention relates to the field of biotechnology and provides antibodies that specifically binds to PD-L1. The invention also relates to DNA encoding said antibodies, to corresponding expression vectors and to methods of producing, and to methods of treatment using said antibodies.
Abstract:
The present invention relates to the field of bioengineering, specifically to antibodies or their antigen-binding fragments, and to the use thereof. More particularly, the present invention relates to antibodies that bind specifically to CD47 and PD-L1. The invention also relates to a nucleic acid that codes for the given antibody or for the antigen-binding fragment thereof, to an expression vector, to a method of producing the antibody, and to a use of the aforementioned antibodies and compositions in cancer treatment.
Abstract:
The present invention relates to a new compound of formula I: or pharmaceutically acceptable salt, solvate or stereoisomer thereof, wherein: V1 is C or N, V2 is C(R2) or N, whereby if V1 is C then V2 is N, if V1 is C then V2 is C(R2), or if V1 is N then V2 is C(R2); each n, k is independently 0, 1; each R2, R11 is independently H, D, Hal, CN, NR′R″, C(O)NR′R″, C1-C6 alkoxy; R3 is H, D, hydroxy, C(O)C1-C6 alkyl, C(O)C2-C6 alkenyl, C(O)C2-C6 alkynyl, C1-C6 alkyl; R4 is H, Hal, CN, CONR′R″, hydroxy, C1-C6 alkyl, C1-C6 alkoxy; L is CH2, NH, O or chemical bond; R1 is selected from the group of the fragments, comprising: Fragment 1, Fragment 2, Fragment 3 each A1, A2, A3, A4 is independently CH, N, CHal; each A5, A6, A7, A8, A9 is independently C, CH or N; R5 is H, CN, Hal, CONR′R″, C1-C6 alkyl, non-substituted or substituted by one or more halogens; each R′ and R″ is independently selected from the group, comprising H, C1-C6 alkyl, C1-C6 cycloalkyl, aryl; R6 is selected from the group: [formula II] each R7, R8, R9, R10 is independently vinyl, methylacetylenyl; Hal is CI, Br, I, F, which have properties of inhibitor of Bruton's tyrosine kinase (Btk), to pharmaceutical compositions containing such compounds, and their use as pharmaceuticals for treatment of diseases and disorder.
Abstract:
The monoclonal IgG-type antibodies were suggested comprising variable domains represented by a combination of VHH-derivative with a variable domain of the light chain VL. Said antibodies can comprise amino acid substitutions at positions 44 and 45 (Kabat numbering) or combinations thereof. Antibodies of the invention possess increased affinity and improved aggregation stability.
Abstract:
The invention relates to a monoclonal humanized antibody or antigen-binding fragment thereof that specifically bind to the TRBV9 family of the human T cell receptor. The invention also relates to a nucleic acid encoding said antibody or antigen-binding fragment thereof, an expression vector, a method for preparing said antibody, and use of said antibody in treatment of diseases or disorders associated with the human T cell receptor family. The invention is directed to generation of antibodies that can be used for treating, in particular AS, celiac disease and malignant blood diseases, the pathogenesis of which involves the TRBV9 family TCRs.
Abstract:
The present disclosure relates to biotechnology and provides antibodies that specifically bind to IL-5Rα. The disclosure also relates to DNA encoding the antibodies, the corresponding expression vectors and methods of production thereof, as well as methods of treatment using the antibodies.
Abstract:
The present application relates to the fields of biotechnology, virology, genetics, and molecular biology. More specifically, the present invention relates to an isolated nucleic acid for producing a gene therapy viral product, said isolated nucleic acid comprising a nucleic acid that encodes the SMN1 protein having the amino acid sequence of SEQ ID NO: 1, and a nucleic acid that encodes the microRNA miR-23a, an expression cassette and a vector based thereon, as well as an AAV9-based recombinant virus for expressing the SMN1 gene in target cells, a pharmaceutical composition that includes said recombinant virus, and various uses of the above recombinant virus and the above composition.
Abstract:
The disclosure relates to the field of pharmacy and medicine, specifically to aqueous compositions of anti-IL-6R antibody levilimab which may be used as a medicinal product for treating IL-6R-associated diseases.