Abstract:
A non-aqueous metal catalytic composition includes (a) a complex of silver and an oxime comprising reducible silver ions in an amount of at least 2 weight %, (b) a silver ion photoreducing composition in an amount of at least 1 weight %, and (c) a photocurable component, a non-curable polymer, or a combination of a photocurable component and a non-curable polymer. This non-aqueous metal catalytic composition can be used to form silver metal particles in situ during suitable reducing conditions. The silver metal can be provided in a suitable layer or pattern on a substrate, which can then be subsequently subjected to electroless plating to form electrically-conductive layers or patterns for use in various articles or as touch screen displays in electronic devices.
Abstract:
A non-aqueous metal catalytic composition includes (a) a complex of silver and an oxime comprising reducible silver ions in an amount of at least 2 weight %, (b) a silver ion photoreducing composition in an amount of at least 1 weight %, and (c) a photocurable component, a non-curable polymer, or a combination of a photocurable component and a non-curable polymer. This non-aqueous metal catalytic composition can be used to form silver metal particles in situ during suitable reducing conditions. The silver metal can be provided in a suitable layer or pattern on a substrate, which can then be subsequently subjected to electroless plating to form electrically-conductive layers or patterns for use in various articles or as touch screen displays in electronic devices.
Abstract:
A non-aqueous metal catalytic composition includes (a) a complex of silver and a hindered aromatic N-heterocycle comprising reducible silver ions in an amount of at least 2 weight %, (b) a silver ion photoreducing composition in an amount of at least 1 weight %, and (c) a photocurable component, a non-curable polymer, or a combination of a photocurable component and a non-curable polymer. This non-aqueous metal catalytic composition can be used to form silver metal particles in situ during suitable reducing conditions. The silver metal can be provided in a suitable layer or pattern on a substrate, which can then be subsequently subjected to electroless plating to form electrically-conductive layers or patterns for use in various articles or as touch screen displays in electronic devices.
Abstract:
A non-aqueous metal catalytic composition includes (a) a silver carboxylate-trialkyl(triaryl)phosphite complex comprising reducible silver ions in an amount of at least 2 weight %, (b) a silver ion photoreducing composition in an amount of at least 1 weight %, and (c) a photocurable component or a non-curable polymer or a combination of a photocurable component and a non-curable polymer. This non-aqueous metal catalytic composition can be used to form silver metal particles in situ during suitable reducing conditions. The silver metal can be provided in a suitable layer or pattern on a substrate, which can then be subsequently subjected to electroless plating to form electrically-conductive layers or patterns for use in various articles or as touch screen displays in electronic devices.
Abstract:
Photocured patterns can be provided using relief printing members such as flexographic printing plates. A photocurable composition has at least one N-oxyazinium salt photoinitiator, a photosensitizer for the N-oxyazinium salt, an N-oxyazinium salt efficiency amplifier, and one or more photocurable acrylates. After the photocurable composition is applied using the relief printing member, it is then exposed to suitable radiation to form a photocured pattern on the substrate.
Abstract:
An organic film-forming polymer has a Tg of at least 70° C. and comprises a backbone comprising recurring units of Structure (A) shown in this application. These organic film-forming polymers can be used as dielectric materials in various devices with improved properties such as improved mobility.
Abstract:
Specific applications of particles and particle agglomerates with semiconductor surfaces are provided. The particles and particle agglomerates display a high affinity for viral particles, and may be used therapeutically and/or prophylactically to treat or prevent viral infections. The particles and particle agglomerates may also be used to remove viral particles from a surface or fluid, e.g., as an absorbent in a filter, applied to surfaces to render them virostatic, and as tool to handle viral particles, e.g., for research, diagnostic, or decontamination purposes.
Abstract:
A photocurable ink contains a colorant dissolved or dispersed within a solvent, a photoinitiator, an organic phosphite, and a photocurable compound. This photocurable ink can be used for imaging or other applications where a uniform or patterned image is desired on a substrate. The photocurable ink can be cured partially before application, or totally cured after application.
Abstract:
An article includes a flexible or rigid substrate and dry layer comprising an aromatic, non-polymeric amic acid salt that can be thermally converted to a corresponding arylene diimide. Upon conversion of the aromatic, non-polymeric amic acid salt, the dry layer has semiconductive properties and can be used in various devices including thin-film transistor devices.
Abstract:
Photocuring methods are made more efficient by using an N-oxyazinium salt photoinitiator with an organic phosphine as a photoinitiator efficiency amplifier. This photoinitiator composition can be used to cure acrylates or other photocurable compounds, particularly in an oxygen-containing environment. The method can be used to prepare various articles, fibers, or devices with photocured compositions.