Abstract:
A photomask and a method of fabricating the photomask. The photomask including: a substrate transparent to a selected wavelength or wavelengths of radiation, the substrate having a top surface and an opposite bottom surface, the substrate having a printable region and a non-printable region; the printable region having first opaque regions raised above the top surface of the substrate adjacent to clear regions, each opaque region of the first opaque regions having sidewalls and opposite top and bottom surfaces, the first opaque regions including a metal; the non-printable region including metal second opaque region raised above the top surface of the substrate, the second opaque region having sidewalls and opposite top and bottom surface, the second opaque regions including the metal; and a conformal protective metal oxide capping layer on top surfaces and sidewalls of the first and second opaque regions. The conformal layer is formed by oxidation.
Abstract:
Structures for aligning wafers and methods for operating the same. The structure includes (a) a first semiconductor wafer including a first capacitive coupling structure, and (b) a second semiconductor wafer including a second capacitive coupling structure. The first and second semiconductor wafers are in direct physical contact with each other via a common surface. If the first and second semiconductor wafers are moved with respect to each other by a first displacement distance of 1 nm in a first direction while the first and second semiconductor wafers are in direct physical contact with each other via the common surface, then a change of at least 10−18 F in capacitance of a first capacitor comprising the first and second capacitive coupling structures results. The first direction is essentially parallel to the common surface.
Abstract:
An opening in an insulator on a substrate is self-aligned to a reflective region on the substrate. The opening is formed by shining blanket radiation on photoresist on the insulator and developing to open the resist and insulator. The resist region that is above the reflective region absorbs both incident and reflected radiation, a larger total dose of radiation than is absorbed by resist above non-reflective regions. The incident dose is adjusted to provide a below threshold dose everywhere except to those regions of resist that are above highly reflective regions.