Abstract:
A method of making a through wafer via. The method includes: forming a trench in a semiconductor substrate, the trench open to a top surface of the substrate; forming a polysilicon layer on sidewalls and a bottom of the trench; oxidizing the polysilicon layer to convert the polysilicon layer to a silicon oxide layer on the sidewalls and bottom of the trench, the silicon oxide layer not filling the trench; filling remaining space in the trench with an electrical conductor; and thinning the substrate from a bottom surface of the substrate and removing the silicon oxide layer from the bottom of the trench. The method may further include forming a metal layer on the silicon oxide layer before filling the trench.
Abstract:
A photomask and a method of fabricating the photomask. The photomask including: a substrate transparent to a selected wavelength or wavelengths of radiation, the substrate having a top surface and an opposite bottom surface, the substrate having a printable region and a non-printable region; the printable region having first opaque regions raised above the top surface of the substrate adjacent to clear regions, each opaque region of the first opaque regions having sidewalls and a top surface; the non-printable region comprising a second opaque region raised above the top surface of the substrate, the second opaque region having sidewalls and a top surface; and a capping layer on the sidewalls of the first opaque regions and the sidewalls of the second opaque region.
Abstract:
The advantages of the invention are realized by a chip-on-chip module having at least two fully functional chips, electrically connected together, and a chip-on-chip component connection/interconnection for electrically connecting the fully functional chips to external circuitry.
Abstract:
Methods and apparatus are set forth for burn-in stressing and simultaneous testing of a plurality of semiconductor device chips laminated together in a stack configuration to define a multichip module. Testing is facilitated by connecting temporary interconnect wiring to an access surface of the multichip module. This temporary interconnect wiring electrically interconnects at least some semiconductor device chips within the module. Prior to burn-in stressing and testing, a separate electrical screening step occurs to identify any electrical defect in the connection between the temporary interconnect wiring and the multichip module. If an electrical defect is identified, various techniques for removing or isolating the defect are presented. Thereafter, burn-in stressing and simultaneous testing of the semiconductor chips within the multichip module occurs using the temporary interconnect wiring. Various alignment and test fixtures are described for facilitating this burn-in and simultaneous testing of the semiconductor chips within the multichip module.
Abstract:
A through silicon via structure and a method of fabricating the through silicon via. The method includes: (a) forming a trench in a silicon substrate, the trench open to a top surface of the substrate; (b) forming a silicon dioxide layer on sidewalls of the trench, the silicon dioxide layer not filling the trench; (c) filling remaining space in the trench with polysilicon; after (c), (d) fabricating at least a portion of a CMOS device in the substrate; (e) removing the polysilicon from the trench, the dielectric layer remaining on the sidewalls of the trench; (f) re-filling the trench with an electrically conductive core; and after (f), (g) forming one or more wiring layers over the top surface of the substrate, a wire of a wiring level of the one or more wiring levels closest to the substrate contacting a top surface of the conductive core.
Abstract:
A through-wafer via structure and method for forming the same. The through-wafer via structure includes a wafer having an opening and a top wafer surface. The top wafer surface defines a first reference direction perpendicular to the top wafer surface. The through-wafer via structure further includes a through-wafer via in the opening. The through-wafer via has a shape of a rectangular plate. A height of the through-wafer via in the first reference direction essentially equals a thickness of the wafer in the first reference direction. A length of the through-wafer via in a second reference direction is at least ten times greater than a width of the through-wafer via in a third reference direction. The first, second, and third reference directions are perpendicular to each other.
Abstract:
A through silicon via structure and a method of fabricating the through silicon via. The method includes: (a) forming a trench in a silicon substrate, the trench open to a top surface of the substrate; (b) forming a silicon dioxide layer on sidewalls of the trench, the silicon dioxide layer not filling the trench; (c) filling remaining space in the trench with polysilicon; after (c), (d) fabricating at least a portion of a CMOS device in the substrate; (e) removing the polysilicon from the trench, the dielectric layer remaining on the sidewalls of the trench; (f) re-filling the trench with an electrically conductive core; and after (f), (g) forming one or more wiring layers over the top surface of the substrate, a wire of a wiring level of the one or more wiring levels closet to the substrate contacting a top surface of the conductive core.
Abstract:
A through-wafer via structure and method for forming the same. The through-wafer via structure includes a wafer having an opening and a top wafer surface. The top wafer surface defines a first reference direction perpendicular to the top wafer surface. The through-wafer via structure further includes a through-wafer via in the opening. The through-wafer via has a shape of a rectangular plate. A height of the through-wafer via in the first reference direction essentially equals a thickness of the wafer in the first reference direction. A length of the through-wafer via in a second reference direction is at least ten times greater than a width of the through-wafer via in a third reference direction. The first, second, and third reference directions are perpendicular to each other.
Abstract:
Chip-on-chip interconnections of varied characteristics, such as varied diameters, heights and/or composition, are disclosed. A first chip-on-chip interconnection on a joining plane has a first characteristic (e.g., a first height) and a second chip-on-chip interconnection on the same joining plane has a second characteristic (e.g., a second height greater than the first height). The first and second characteristics of the chip-on-chip interconnections allow for chip-on-chip connections to other packages, substrates or chips of different levels and/or compositions.
Abstract:
A multi-chip module is disclosed in which a first die connects to a second set of die via a set of C4 connections within a single package. Low resistivity signal posts are provided within the lateral separation between adjacent die in the second set of die. These signal posts are connectable to externally supplied power signals. The power signals provided to the signals posts are routed to circuits within the second set of die over relatively short metallization interconnects. The signal posts may be connected to thermally conductive via elements and the package may include heat spreaders on upper and lower package surfaces. The first die may comprise a DRAM while the second set of die comprise portions of a general purpose microprocessor. The power signals provided to the second set of die may be connected to a capacitor terminal in the first die to provide power signal decoupling.